
On Message-Passing, MAP Estimation in
Graphical Models and DCOPs

Akshat Kumar, William Yeoh, and Shlomo Zilberstein

Computer Science Department
University of Massachusetts

Amherst, MA 01003
{akshat,wyeoh,shlomo}@cs.umass.edu

Abstract. The maximum a posteriori (MAP) estimation problem in
graphical models is a problem common in many applications such as
computer vision and bioinformatics. For example, they are used to iden-
tify the most likely orientation of proteins in protein design problems. As
such, researchers in the machine learning community have developed a
variety of approximate algorithms to solve them. On the other hand, dis-
tributed constraint optimization problems (DCOPs) are well-suited for
modeling many multi-agent coordination problems such as the coordina-
tion of sensors in a network and the coordination of power plants. In this
paper, we show that MAP estimation problems and DCOPs bear strong
similarities and, as such, some approximate MAP algorithms such as it-
erative message passing algorithms can be easily tailored to solve DCOPs
as well.

Keywords: Graphical Models, MAP Estimation Problems, DCOPs

1 Introduction

Markov random fields (MRFs) [32] is a graphical model, where nodes in a graph
correspond to random variables and edges in a graph correspond to potential
functions between pairs of random variables. A common problem in MRFs is
to compute the maximum a posteriori (MAP) assignment, which is the most
probable assignment to all the random variables of the underlying graph. The
MAP estimation problem is a problem common in many applications such as
computer vision, bioinformatics and information theory. For example, they are
used to identify the most likely orientation of proteins in protein design prob-
lems [35; 25]. As such, researchers, who are typically from the machine learning
community, have developed a variety of approximate inference algorithms [32; 24]
to solve them.

Distributed constraint optimization problem (DCOP) [15; 18; 38] is also a
graphical model; nodes in a graph correspond to agents, where each agent can
take on a value, and edges in a graph correspond to constraint functions between
pairs of agents, where each constraint function is a function of the values of a
pair of agents. The agents in a DCOP coordinate with each other via messages

57

to optimize all their constraint functions. DCOPs have emerged as a popular
model for representing multi-agent coordination problems where the primary
interactions are between subsets of agents. Examples of such problems include
the scheduling of meetings [13], the coordination of sensors in networks [3], the
management of power plants [11] and the generation of coalition structures [27].
As such, researchers, who are typically from the multi-agent systems commu-
nity, have developed a variety of optimal DCOP algorithms [14; 15; 18] and
approximate DCOP algorithms [4; 6; 16] to solve them.

Since both MAP estimation problems and DCOPs are graphical models,
they share many similarities. The main difference is MAP estimation problems
are centralized problems while DCOPs are decentralized problems. However,
many (centralized) algorithms used to solve MAP estimation problems can be
executed in a decentralized fashion and they can thus be tailored to solve DCOPs.
For example, the max-sum algorithm [3] and algorithms using the Divide-and-
Coordinate approach [28] that are used to solve DCOPs are motivated by MAP
estimation algorithms [17; 10]. In this paper, we aim to highlight the similarities
between the MAP estimation problem and DCOPs more explicitly, and show
how a class of approximate MAP algorithms, namely iterative message passing
algorithms, can be tailored to solve DCOPs. To the best of our knowledge,
the connection between MAP estimation problems and DCOPs have not been
explicitly made. Thus, it is our hope that this work will better bridge the two
research communities, namely machine learning and multi-agent systems, and
will help cross-fertilize them.

This paper is organized as follows. In Section 2, we describe MAP estimation
problems, DCOPs and their similarities. In Sections 3 and 4, we give a brief
overview of several iterative message passing algorithms and how they can be
applied to solve DCOPs, and in Section 5, we describe their properties and space
complexities. Lastly, we present our experimental results and conclusions.

2 Graphical Models

Probabilistic graphical models provide an effective framework for compactly rep-
resenting probability distributions over high dimensional spaces and performing
complex inference using simple local update procedures. In this work, we relate
two optimization problems represented as graphical models: the maximum a pos-
teriori (MAP) estimation in Markov random fields (MRFs) [32] and distributed
constraint optimization problems (DCOPs) [15; 18; 38]. MAP estimation is cru-
cial for many practical applications in computer vision and bioinformatics such
as protein design [35; 25]. Computing the MAP exactly is NP-hard for general
graphs [2]. Thus, approximate inference algorithms are often used [32; 24]. In
this section, we will provide an overview of MAP estimation in MRFs and how
they relate to DCOPs

58

2.1 MRFs and MAP Estimation Problems

A pairwise Markov random field (MRF) can be visualized by an undirected graph
G = (V,E). It is formally defined by

– A set of random variables X = {xi | ∀i ∈ V }, where each random variable
has a finite domain of possible values that it can be assigned. Each random
variable xi is associated with node i ∈ V .

– A set of potential functions θ = {θij(xi, xj) | ∀(i, j) ∈ E}. Each potential
function θij(xi, xj) is associated with edge (i, j) ∈ E.

The complete assignment x to all the random variables has the probability:

p(x;θ) ∝ exp
(∑

ij∈E

θij(xi, xj)
)

(1)

The objective of a maximum a posteriori (MAP) problem is to find the most
probable assignment to all the variables under p(x;θ). This objective is equiva-
lent to finding a complete assignment x that maximizes the function:

f(x;θ) =
∑
ij∈E

θij(xi, xj) (2)

Additionally, we assume without loss of generality that each θij is non-
negative in this paper. Otherwise, a constant can be added to each θij without
changing the optimal solution.

2.2 DCOPs

Like MRFs, a distributed constraint optimization problem (DCOP) with binary
constraints can also be visualized by an undirected graph G = (V,E), commonly
called a constraint graph. It is formally defined by

– A set of agents X = {xi | ∀i ∈ V }, where each agent has a finite domain of
possible values that it can take on. Each agent xi is associated with node
i ∈ V .

– A set of constraint functions θ = {θij(xi, xj) | ∀(i, j) ∈ E}. Each constraint
θij(xi, xj) is associated with edge (i, j) ∈ E.1

Therefore, agents and constraint functions in a DCOP correspond to random
variables and potential functions in an MRF, respectively. Similar to the MAP
estimation problem, the objective in a DCOP is to find the complete assignment
1 Although the typical notation of a constraint function is Fij or cij in the DCOP

literature, we use the notation in the machine learning literature to better illustrate
the mapping between MAP estimation problems and DCOPs.

59

x that maximizes the function f(x;θ) in Equation (2). The main difference
between MAP estimation problems and DCOPs is that the former are central-
ized problems while the latter are decentralized problems. In MAP estimation
problems, a single agent has complete knowledge of all potential functions and
controls the value assignments of all random variables, while in DCOPs, each
agent has knowledge of the constraint functions that it is involved in only and
chooses its own value only. Nonetheless, many (centralized) MAP estimation al-
gorithms can be executed in a decentralized fashion and can thus can be tailored
to solve DCOPs.

3 Variational MAP Formulations and Algorithms

In this section, we provide an overview of two common variational formulation
of the MAP estimation problem: linear programming (LP) and quadratic pro-
gramming (QP) formulations. Most of the existing algorithms in the machine
learning literature can be classified as solving either one of these two formu-
lations. We then describe two such algorithms, namely the max-product linear
programming (MPLP) algorithm of [5], which operates on the LP formulation,
and the expectation-maximization (EM) algorithm of [12], which operates on
the QP formulation.

3.1 Linear Programming Formulation

We now describe the first common variational formulation of the MAP estimation
problem: a linear programming (LP) formulation. We first briefly describe the
concept of marginal polytope that is often associated with the MAP estimation
problem. The reader is referred to [32] for more details.

Let µ denote a vector of marginal probabilities (also called mean parameters)
for each node and edge of the MRF. That is, it includes µi(xi) ∀i ∈ V and
µij(xi, xj) ∀(i, j) ∈ E. The set of µ that arises from some joint distribution p
over all the variables of the MRF is referred to as the marginal polytopeM(G):

M(G) = {µ | ∃p(x) s.t. p(xi, xj) = µij(xi, xj), p(xi) = µi(xi)} (3)

The MAP estimation problem is then equivalent to solving the following LP:

max
x

f(x;θ) = max
µ∈M(G)

µ · θ = max
µ∈M(G)

∑
ij∈E

∑
xixj

µij(xi, xj)θij(xi, xj) (4)

Notice that p is a joint distribution over all the variables of the MRF –
p(x1, . . . , xn) – and is, in general, very hard to represent and reason with. It can
be shown that there always exists a maximizing solution µ for the above problem
that is integral and gives the optimal assignment x. Unfortunately, the number
of constraints used to describe this polytope are exponential and, thus, it can

60

not be solved efficiently. To remedy this problem, researchers have proposed LP
relaxations that outer bound the polytopeM(G). That is, the relaxed polytope
ML(G) is a super set of M(G) and may include certain fractional assignment
to the random variables. This relaxation weakens the global constraint that µ
arises from some common distribution p. Instead, only pairwise (corresponding
to the edges) and singleton consistency is required for mean parameters as given
by the following condition:

∑
xi

µi(xi) = 1 ∀i ∈ V (5)∑
x̂i

µij(x̂i, xj) = µj(xj) ∀xj , (i, j) ∈ E (6)

∑
x̂j

µij(xi, x̂j) = µi(xi) ∀xi, (i, j) ∈ E (7)

The constraints
∑

x̂i
µij(x̂i, xj) = µj(xj) and

∑
x̂j

µij(xi, x̂j) = µi(xi) ensure
that, for each edge (i, j) ∈ E, the probability distribution µij of the edge is
consistent with the probability distributions µj of node j ∈ V and µi of node
i ∈ V , respectively. It might appear we can easily solve the LP of Eq. (4) sub-
ject to the above constraints, which are polynomial in the number of edges and
domain size. However, even for moderately sized graphs, this LP becomes quite
large with many constraints and the black-box LP solvers such as CPLEX do
not scale well [35]. Therefore such LP is solved using specialized message-passing
algorithms that take into account the graph structure of this LP [21; 25; 23].
There are several other algorithms which either work on this LP formulation
or its dual such as the tree-reweighted max-product (TRMP) algorithm [30],
convergent tree-reweighted algorithm (TRW-S) [9], the max-sum diffusion algo-
rithm (MSD) [33; 34] and Lagrangian relaxation based approaches [7] among
others.

3.2 Quadratic Programming Formulation

We now describe the second variational formulation of the MAP estimation
problem: a quadratic programming (QP) formulation. The reader is referred
to [22] for more details. Instead of Equation (4), the MAP estimation problem
can also be formulated as a QP:

max
µ1,...,µn

∑
ij∈E

∑
xi,xj

µi(xi)µj(xj)θij(xi, xj) (8)

subject to
∑
xi

µi(xi) = 1, µi(xi) ≥ 0 ∀i ∈ V

The above QP is compact even for large graphical models and has simple linear
constraints – O(|V |k) variables, where k is the maximum domain size, and |V |

61

Algorithm 1: Max-Product Linear Programming (MPLP) Algorithm

input: Graph G = (V, E) and potential functions θ
output: Return complete assignment x s.t. xi = argmaxx̂i

bi(x̂i)

repeat
foreach node i ∈ V do

Send message γi→j to each neighbor j ∈ Ne(i):

γi→j(xj)← maxxi

h
θij(xi, xj)− γj→i(xi) + 2

|Ne(i)|+1

P
k∈Ne(i) γk→i(xi)

i
Set node belief bi(xi) to the sum of incoming messages:
bi(xi)←

P
k∈Ne(i) γk→i(xi)

until desired number of iterations

Algorithm 2: Expectation Maximization (EM) Algorithm

input: Graph G = (V, E) and potential functions θ
output: Return complete assignment x s.t. xi = argmaxx̂i

µi(x̂i)

repeat
foreach node i ∈ V do

Send message δi→j to each neighbor j ∈ Ne(i):
δi→j(xj)←

P
xi

µi(xi) θij(xi, xj)
Set new marginal probability to sum of incoming messages:

µi(xi)← µi(xi)
P

k∈Ne(i) δk→i(xi)

Ci

until desired number of iterations

normalization constraints. Ravikumar and Lafferty also show that this formula-
tion is exact [22]. That is, the global optimum of the above QP will maximize
the function f(x;θ) and an integral MAP assignment can be extracted from it.
However, this formulation is non-convex and thus makes the global optimization
hard. Nonetheless, the local optima of this QP correspond to good solutions for
most problems empirically [12].

Next we describe two algorithms, the max-product LP (MPLP) [5] and the
expectation-maximzation (EM) [12] which work on these two formulations. Both
of these algorithms are based on iterative message-passing among neighboring
agents and can be easily adapted for DCOPs.

3.3 MPLP and EM

Algorithms 1 and 2 show the pseudocode of the MPLP and EM algorithm,
respectively. The MPLP algorithm operates on the dual of the LP formulation
described in Section 3.1 and the EM algorithm operates on the QP formulation
described in Section 3.2. In each iteration, every node i sends a message to each
of its neighbor j ∈ Ne(i). The messages in MPLP are denoted by γi→j and
the messages in EM are denoted by δi→j . The marginal probability µi(xi) in
Algorithm 2 is the same as in the QP and the variable Ci is the normalization
constant such that the resulting marginal probabilities sum up to one. Once the

62

Algorithm 3: Max-Sum (MS) Algorithm

input: Graph G = (V, E) and potential functions θ
output: Return complete assignment x s.t. xi = argmaxx̂i

bi(x̂i)

repeat
foreach node i ∈ V do

Send message mi→j to each neighbor j ∈ Ne(i):
mi→j(xj)← maxxi

ˆ
θij(xi, xj) +

P
k∈Ne(i)\j mk→i(xi)

˜
Set node belief bi(xi) to the sum of incoming messages:
bi(xi)←

P
k∈Ne(i) mk→i(xi)

until desired number of iterations

algorithm is run for a desired number of iterations, the complete assignment
x can be extracted using the individual maximizer of the beliefs bi for MPLP
and marginal probabilities µi for EM of each node i. Alternatively, one can also
run a better scheme to extract the solution of EM by running an additional
iteration of message passing among neighbors [22]. It is quite clear that these
algorithms can be easily adapted to solve DCOPs by letting each agent control
its corresponding random variable and manage the messages that it sends and
receives. Furthermore, the messages are computed based only on the shared
information among immediate neighbors in the graph. Therefore, this property
follows the DCOP specification that each agent knows only about the constraint
functions with its immediate neighbors.

4 Reparameterization View of the MAP Problem

Since the max-sum (MS) algorithm [17] has been very successful in several con-
texts such as information theory [1; 31] and DCOPs [3], we provide an overview
of some of the recently developed theoretical results behind it. Unlike the MPLP
and EM algorithms, max-sum reparameterizes the original probability distribu-
tion of Equation (1) in terms of max-marginals for acyclic graphs and pseudo-
max-marginals for cyclic graphs before estimating the MAP from these (pseudo)-
max-marginals.

Algorithm 3 shows the pseudocode of the MS algorithm. Like the MPLP
and EM algorithms, in each iteration, every node i sends a message mi→j to
each of its neighbor j ∈ Ne(i). Once the algorithm is run for a desired number
of iterations, the complete assignment x can be extracted using the individual
maximizer of the beliefs bi of each node i. Similar to the MPLP and EM algo-
rithms, it is quite clear that this algorithm can also be easily adapted to solve
DCOPs in the same way, as is already demonstrated [3].

We now briefly describe a reparameterization of the MAP estimation prob-
lem. The reader is referred to [31] for more details. Instead of max-sum, we
discuss the max-product algorithm – max-sum messages can be considered as
the log of messages in max-product which changes products to sums – which
is more commonly described in the literature [31]. The max-product algorithm

63

maximizes the objective function of Equation (1) instead of the one of Equa-
tion (2). For comparison, their equivalent messages are:

msum
i→j (xj)← max

xi

(
θij(xi, xj) +

∑
k∈Ne(i)\j

mk→j(xi)
)

(9)

mprod
i→j (xj)← max

xi

(
exp

(
θij(xi, xj)

) ∏
k∈Ne(i)\j

mk→j(xi)
)

(10)

where the former are the messages of max-sum and the latter are the messages
of max-product. Assume that the algorithm converges and m? are the messages
upon convergence. We then define functions T ?

i for each node i and T ?
ij for each

edge (i, j) as:

T ?
i (xi) =

∏
j∈Ne(i)

m?
j→i(xi) (11)

T ?
ij(xi, xj) = exp(θij(xi, xj))

∏
k∈Ne(i)\j

m?
k→i(xi)

∏
l∈Ne(j)\i

m?
l→j(xj) (12)

These functions T? define an alternative parameterization of the distribution
p(x; θ) of Equation (1) as follows for both cyclic and acyclic graphs:

p(x;T?) ∝
∏
i∈V

T ?
i (xi)

∏
(i,j)∈E

T ?
ij(xi, xj)

T ?
i (xi)T ?

j (xj)
(13)

The following two properties hold for functions T?:

– If the graph is acyclic, then the functions Ti and Tij are equivalent to the
max-marginals Pi and Pij , which are defined as follows:

Pi(xi) = κ max
{x′|x′i=xi}

p(x′; θ) (14)

Pij(xi, xj) = κ max
{x′|(x′i,x′j)=(xi,xj)}

p(x′; θ) (15)

where κ is a constant that can be different for each node i and edge (i, j).
Intuitively, Pi(xi) is the probability of a most likely assignment x′ with x′i
fixed to xi in x and Pij(xi, xj) is the probability of a most likely assignment
with x′i and x′j fixed to xi and xj in x respectively. Such reparameterization
is helpful as the complete MAP assignment x? can then be extracted easily
using one iteration of message-passing based on these max-marginals [31].

– If the graph is cyclic, then the functions T? do not represent the true max-
marginals. However, they satisfy certain local consistency requirements, and

64

they are commonly referred to as the pseudo-max-marginals. The approx-
imate MAP assignment for such graphs can then be extracted from such
pseudo-max-marginals and, as empirically demonstrated [1; 31], is quite
close to the optimal MAP assignment.

Wainwright and Jordan also show that any positive distribution p(x) de-
fined on a pairwise graph can be reparameterized in terms of pseudo-max-
marginals [31]. Therefore, the fixed point of max-product updates exists for
any arbitrary graph. Previously, this result was known only for acyclic graphs or
graphs with only a certain number of cycles. This fundamental insight about the
fixed point of max-product has resulted in the development of several successful
and convergent message passing algorithms such as tree-reweighted max-product
(TRMP) [30] and its variants [9].

5 Properties and Complexities of the Message Passing
Algorithms

In this section, we discuss some of the desirable properties of approximate DCOP
algorithms and specify whether the abovementioned algorithms have these prop-
erties.

5.1 Properties

– Convergence: An algorithm is said to have this property if it is guaranteed
to converge to a fixed point after a finite number of iterations. For message
passing algorithms, the fixed point is the point where the content of every
message no longer changes. This property can be used as a basis to guarantee
termination. The MPLP and EM algorithms have this property. The MS
algorithm does not have this property unless it is operating on a acyclic
graph. Most existing approximate DCOP algorithms like the k-, t- and C-
optimal algorithms and those based on the Anytime Local Search framework
have this property [16; 8; 29; 39].

– Anytime: An algorithm is said to have this property if it finds solutions
whose qualities are monotonically non-decreasing. The EM algorithm has
this property. Both the MPLP and MS algorithms do not have this property.
Most existing approximate DCOP algorithms like the k-, t- and C-optimal
algorithms and those based on the Anytime Local Search framework have
this property [16; 8; 29; 39].

– Error Bounded: An algorithm is said to have this property if it has an
error bound on the solution quality. The MPLP algorithm has this property.
The upper bound UB can be calculated by using the γ messages as follows:

UB =
∑
i∈V

max
xi

∑
k∈Ne(i)

γk→i(xi) (16)

65

Instance Time (sec.) Cycles Solution Quality Error Bound

MPLP BnB-Adopt MPLP BnB-Adopt MPLP BnB-Adopt MPLP

1 0.181 496.75 403 55940 2402 2402 0.83
2 0.183 584.59 308 65646 3631 3631 0.20
3 0.807 470.75 466 52947 2718 2718 0.30
4 0.236 502.00 467 56613 2615 2615 0.47
5 0.160 484.32 382 54523 2758 2758 0.75

Table 1. Results for 4× 4 grids

Furthermore, this upper bound is also monotonically non-increasing. The
EM and MS algorithms do not have this property. Most existing approxi-
mate DCOP algorithms like the k-, t- and C-optimal algorithms have this
property but, unlike the MPLP upper bounds, their upper bounds are de-
termined a priori before the start of the algorithm [16; 8; 29].

– Dynamic: An algorithm is said to have this property if it is able to solve
dynamic DCOPs, that is, DCOPs that change over time. The MPLP, EM
and MS algorithms have this property. These message passing algorithms
can handle dynamic DCOPs easily since they can compute the content of the
messages and update their marginal probabilities/beliefs in the exact same
way whether a DCOP changes or not. On the contrary, other pseudotree-
based DCOP algorithms like ADOPT and DPOP need to reconstruct their
pseudotrees for the new problem before solving it. However, it is important
to note that there are several extensions of these pseudotree-based algo-
rithms to handle dynamic DCOPs as well [19; 20; 26; 37].

5.2 Complexity Analysis

In this section, we describe the space complexity of the algorithms and their
messages. In each iteration, the MPLP, EM and MS algorithms send |Ne(i)|
number of messages for each node i ∈ V , resulting in a total of 2|E| number of
messages. Each of these messages contain ki or, more generally, O(k) floating
point numbers, where ki is the domain size of the sending agent xi and k is the
maximum domain size. Therefore, the network load in each iteration is O(|E|k).

Each agent in all three algorithms needs to store the contents of the messages
received in the previous iteration, the contents of the messages to be sent out
in the current iteration and the marginal probabilities/beliefs. Therefore, the
memory requirement of each agent is O(2|Ne(i)|k + k) = O(|V |k).

6 Experimental Results

We now report some preliminary experimental results that we have obtained. We
evaluated MPLP in sensor network problems using the PEAV formulation [13;
36]. The targets are arranged in a grid and each target is surrounded by four
sensors, all of which are needed to track the target. We used two problem sizes:
problems with 16 targets arranged in a 4× 4 grid and problems with 25 targets

66

Instance Time (sec.) Cycles Solution Quality Error Bound

1 0.502 469 4773 0.06
2 0.685 697 5034 0.16
3 0.807 1087 5025 0.00
4 0.477 491 5279 1.13
5 0.433 447 5078 0.05

Table 2. Results for 5× 5 grids

arranged in a 5×5 grid. The constraint costs are generated randomly. We also ran
BnB-Adopt [36], an optimal DCOP search algorithm, as a baseline comparison.

We conducted our experiments on a machine with 8GB of RAM and 2.66GHz
CPU. We measured the runtimes of the algorithms in the number of seconds and
the number of (synchronous) cycles [15]. Table 1 shows the results for the 4× 4
grids with 16 targets. The table shows that MPLP terminates significantly faster,
in both seconds and cycles, compared to BnB-Adopt and still yields an optimal
solution. The last column indicates the difference between the lower bound on
the cost and the actual cost. Table 2 shows the results of MPLP for the 5 × 5
grids with 25 targets. Again it shows that MPLP finds near optimal solutions
and the error bound is very small. We did not report the results for BnB-Adopt
because the algorithm failed to terminate within a time limit of 2 hours.

The tables show that MPLP can find solutions with very small error bounds
for both problem sizes and finds them by several orders of magnitude faster
than BnB-Adopt. Although these results are preliminary, we believe that they
demonstrate the potential of message passing algorithms to solve DCOPs.

7 Conclusions

Researchers in the machine learning community have long studied the maximum
a posteriori (MAP) estimation problem because of its application in problems
like computer vision and bioinformatics. On the other hand, researchers in the
multi-agents community have studied the distributed constraint optimization
problem (DCOP) because of its application in multi-agent coordination problems
like sensor networks. However, both of these independently formulated problems
bear strong similarities. For example, both problems are graphical models.

In this paper, we formally showed the similarities between these two prob-
lems and described three message passing algorithms, namely max-product lin-
ear programming (MPLP), expectation maximiation (EM) and max-sum (MS),
that were developed to solve the MAP estimation problem. We also showed that
these algorithms can be easily tailored to solve DCOPs as well. We demonstrated
the feasibility of this approach with a preliminary set of experiments, where we
evaluated MPLP on sensor network problems. The results showed that MPLP
can find solutions with very small error bounds and finds them by several or-
ders of magnitude faster than BnB-Adopt, an optimal DCOP search algorithm.
Therefore, we believe that they demonstrate the potential of message passing
algorithms to solve DCOPs.

67

Bibliography

[1] S. Aji, G. Horn, R. McEliece, and M. Xu. Iterative min-sum decoding
of tail-biting codes. In Information Theory Workshop, 1998, pages 68–69,
1998.

[2] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[3] A. Farinelli, A. Rogers, A. Petcu, and N. Jennings. Decentralised coordi-

nation of low-power embedded devices using the Max-Sum algorithm. In
Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 639–646, 2008.

[4] S. Fitzpatrick and L. Meertens. Distributed coordination through anarchic
optimization. In V. Lesser, C. Ortiz, and M. Tambe, editors, Distributed
Sensor Networks: A Multiagent Perspective, pages 257–295. Kluwer, 2003.

[5] A. Globerson and T. Jaakkola. Fixing Max-Product: Convergent message
passing algorithms for MAP LP-relaxations. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 553–560, 2007.

[6] K. Hirayama and M. Yokoo. The distributed breakout algorithms. Artificial
Intelligence, 161(1-2):89–115, 2005.

[7] J. K. Johnson, D. M. Malioutov, and A. S. Willsky. Lagrangian relaxation
for map estimation in graphical models. In Proceedings of the Allerton
Conference on Communication, Control and Computing, 2007.

[8] C. Kiekintveld, Z. Yin, A. Kumar, and M. Tambe. Asynchronous algorithms
for approximate distributed constraint optimization with quality bounds. In
Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 133–140, 2010.

[9] V. Kolmogorov. Convergent tree-reweighted message passing for energy
minimization. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 28:1568–1583, 2006.

[10] N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via dual de-
composition: Message-passing revisited. In IEEE International Conference
on Computer Vision (ICCV), pages 1–8, 2007.

[11] A. Kumar, B. Faltings, and A. Petcu. Distributed constraint optimiza-
tion with structured resource constraints. In Proceedings of the Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 923–930, 2009.

[12] A. Kumar and S. Zilberstein. MAP estimation for graphical models by
likelihood maximization. In Advances in Neural Information Processing
Systems (NIPS), pages 1180–1188, 2010.

[13] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce, and P. Varakantham.
Taking DCOP to the real world: Efficient complete solutions for distributed
event scheduling. In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 310–317,
2004.

68

[14] R. Mailler and V. Lesser. Solving distributed constraint optimization prob-
lems using cooperative mediation. In Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 438–445, 2004.

[15] P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. Artificial In-
telligence, 161(1-2):149–180, 2005.

[16] J. Pearce and M. Tambe. Quality guarantees on k-optimal solutions for dis-
tributed constraint optimization problems. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 1446–1451,
2007.

[17] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
1988.

[18] A. Petcu and B. Faltings. DPOP: A scalable method for multiagent con-
straint optimization. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 266–271, 2005.

[19] A. Petcu and B. Faltings. Superstabilizing, fault-containing multiagent com-
binatorial optimization. In Proceedings of the National Conference on Ar-
tificial Intelligence (AAAI), pages 449–454, 2005.

[20] A. Petcu and B. Faltings. Optimal solution stability in dynamic, distributed
constraint optimization. In Proceedings of the International Conference on
Intelligent Agent Technology (IAT), pages 321–327, 2007.

[21] P. Ravikumar, A. Agarwal, and M. J. Wainwright. Message-passing for
graph-structured linear programs: Proximal projections, convergence and
rounding schemes. In Proceedings of the International Conference on Ma-
chine Learning (ICML), pages 800–807, 2008.

[22] P. Ravikumar and J. Lafferty. Quadratic programming relaxations for met-
ric labeling and Markov random field MAP estimation. In Proceedings of
the International Conference on Machine Learning (ICML), pages 737–744,
2006.

[23] D. Sontag, A. Globerson, and T. Jaakkola. Clusters and coarse partitions
in LP relaxations. In Advances in Neural Information Processing Systems
(NIPS), pages 1537–1544, 2008.

[24] D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual decompo-
sition for inference. In S. Sra, S. Nowozin, and S. Wright, editors, Optimiza-
tion for Machine Learning. MIT Press, 2010.

[25] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tighten-
ing LP relaxations for MAP using message passing. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI), pages 503–510,
2008.

[26] E. Sultanik, R. Lass, and W. Regli. Dynamic configuration of agent organi-
zations. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 305–311, 2009.

[27] S. Ueda, A. Iwasaki, and M. Yokoo. Coalition structure generation based on
distributed constraint optimization. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pages 197–203, 2010.

69

[28] M. Vinyals, M. Pujol, J. Rodriguez-Aguilarhas, and J. Cerquides. Divide-
and-coordinate: DCOPs by agreement. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS), pages 149–156, 2010.

[29] M. Vinyals, E. Shieh, J. Cerquides, J. Rodŕıguez-Aguilar, Z. Yin, M. Tambe,
and E. Bowring. Quality guarantees for region optimal DCOP algorithms.
In Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2011.

[30] M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agree-
ment on (hyper)trees: Message-passing and linear programming approaches.
IEEE Transactions on Information Theory, 51:3697–3717, 2002.

[31] M. Wainwright, T. Jaakkola, and A. Willsky. Tree consistency and bounds
on the performance of the max-product algorithm and its generalizations.
Statistics and Computing, 14:143–166, 2004.

[32] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning,
1:1–305, 2008.

[33] T. Werner. A linear programming approach to max-sum problem: A review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:1165–
1179, 2007.

[34] T. Werner. What is decreased by the max-sum arc consistency algorithm? In
Proceedings of the International Conference on Machine Learning (ICML),
pages 1007–1014, 2007.

[35] C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations
and belief propagation – an empirical study. Journal of Machine Learning
Research, 7:2006, 2006.

[36] W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An asynchronous branch-
and-bound DCOP algorithm. Journal of Artificial Intelligence Research,
38:85–133, 2010.

[37] W. Yeoh, P. Varakantham, X. Sun, and S. Koenig. Incremental DCOP
search algorithms for solving dynamic DCOPs (Extended Abstract). In
Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2011.

[38] W. Zhang, G. Wang, Z. Xing, and L. Wittenberg. Distributed stochastic
search and distributed breakout: Properties, comparison and applications to
constraint optimization problems in sensor networks. Artificial Intelligence,
161(1-2):55–87, 2005.

[39] R. Zivan. Anytime local search for distributed constraint optimization.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pages 393–398, 2008.

70

	front-cover
	blanco
	preface
	Binder2
	1-dcr2011_submission_7
	2-dcr2011_submission_2
	Agile Asynchronous Backtracking for Distributed Constraint Satisfaction Problems

	3-dcr2011_submission_8
	4-dcr2011_submission_6
	5-dcr2011_submission_9
	6-dcr2011_submission_4
	7-dcr2011_submission_5
	8-dcr2011_submission_3
	9-dcr2011_submission_1
	DisChoco 2: A Platform for Distributed Constraint Reasoning

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

