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Abstract

We address the problem of finding the most
likely assignment or MAP estimation in a
Markov random field. We analyze the linear
programming formulation of MAP through
the lens of difference of convex functions
(DC) programming, and use the concave-
convex procedure (CCCP) to develop effi-
cient message-passing solvers. The result-
ing algorithms are guaranteed to converge
to a global optimum of the well-studied lo-
cal polytope, an outer bound on the MAP
marginal polytope. To tighten the outer
bound, we show how to combine it with the
mean-field based inner bound and, again,
solve it using CCCP. We also identify a use-
ful relationship between the DC formulations
and some recently proposed algorithms based
on Bregman divergence. Experimentally, this
hybrid approach produces optimal solutions
for a range of hard OR problems and near-
optimal solutions for standard benchmarks.

1 Introduction

Probabilistic graphical models provide an effective
framework for compactly representing probability dis-
tributions over high-dimensional spaces and perform-
ing complex inference using simple local update proce-
dures. In this work, we focus on the class of undirected
models called Markov random fields (MRFs) [3, 22]. A
common inference problem in this model is to compute
the most probable assignment to variables, also called
the maximum a posteriori (MAP) assignment. MAP
estimation is crucial for many practical applications in
computer vision and bioinformatics such as protein de-
sign [25, 19] among others. Computing MAP exactly
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is NP-hard for general graphs. Thus, approximate in-
ference techniques are often used [22, 16].

Several popular methods for MAP estimation such
as tree-reweighted max-product (TRMP) [21, 8] and
max-product LP (MPLP) [6, 19] are based on a lin-
ear programming (LP) relaxation of the MAP prob-
lem. The LP approaches first reformulate MAP as
a linear objective subject to constraints that enforce
the variables to be marginals of a joint probability
distribution—the respective constraint set is called the
marginal polytope. The LP relaxations relax this con-
strain set to enforce only local consistency—the re-
spective constraint set, the local polytope, is an outer
bound on the marginal polytope [22]. Complementary
to this approach, Ravikumar and Lafferty [12] present
an inner bound on the marginal polytope based on en-
forcing the mean-field structure over the joint distri-
bution of all the variables. This inner bound is quite
compact with much fewer variables and simple con-
straints. And it is accurate in that optimizing over the
inner bound will yield the MAP assignment. However,
the inner bound is not convex, which makes global op-
timization challenging. We present our contributions
in light of these two formulations of the MAP problem.

We start by analyzing the linear programming relax-
ation of MAP through the lens of difference of con-
vex functions (DC) programming. We then use the
concave-convex procedure (CCCP) [26] to solve it ef-
ficiently using message passing. The resulting algo-
rithm is guaranteed to converge to the global optimum
of the LP relaxation. In contrast, existing algorithms
that work on the dual of the LP relaxation such as
TRMP [21], MPLP [6], and MSD [23] may get stuck
in local optima. A number of globally convergent alter-
natives also exist such as the dual decomposition based
approaches [9, 7]. Some of these approaches smooth
the discrete objective using a smoothing parameter,
but achieving high accuracy may lead to numerical
instability [7]. Furthermore, it is unclear how some
of the approaches to tighten the LP relaxation that
work in the primal can be applied to the dual formula-
tion [17]. In contrast, our approach works in the primal
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formulation, does not require any smoothing parame-
ter and can easily accommodate additional constraints
to tighten the LP relaxation. Additionally, black-box
LP solvers are often not as scalable as graph-based
message-passing techniques, as shown in [25]. There-
fore developing globally convergent message-passing
algorithms for the LP relaxation is important.

On many problems, the outer bound based LP relax-
ation may not provide a tight approximation, as noted
in [19, 18, 24, 1]. A popular approach to tighten the
outer bound is to enforce the local consistency over
higher order cliques of variables or clusters [19, 24, 1].
However, the complexity of this approach increases
exponentially with the cluster size, limiting its scal-
ability. We take an alternative approach. As noted
earlier, the inner bound over the marginal polytope
is exact. We therefore combine the inner bound with
the outer bound resulting in a tighter approximation
to the marginal polytope. The resulting optimization
problem may not be convex. However, our approach is
parameterized by a set Q, which precisely controls how
non-convexity is introduced. When |Q| = 0, it corre-
sponds to the LP relaxation and can be solved opti-
mally. Using such flexible control over non-convexity,
we produce optimal solutions for a range of operations
research (OR) problems for which other approaches
such as MPLP fail to do so. We also discuss the close
relationship between the DC programming formula-
tions and recently proposed globally convergent algo-
rithms for solving the LP relaxation using Bregman
divergence [11].

2 The MAP Problem

A pairwise Markov random field (MRF) is described
using an undirected graph G = (V,E). A discrete ran-
dom variable xi with a finite domain is associated with
each node i ∈ V of the graph. We assume that there
are n variables with maximal domain size k. Associ-
ated with each edge (i, j) ∈ E is a potential function
θij(xi, xj). The complete assignment x has the prob-
ability: p(x; θ) ∝ exp

( ∑
ij∈E θij(xi, xj)

)
.

The MAP problem consists of finding the most proba-
ble assignment to all the variables under p(x; θ). This
is equivalent to finding the assignment x that max-
imizes the function f(x; θ) =

∑
ij∈E θij(xi, xj). We

assume wlog that each θij is nonnegative, otherwise a
constant can be added to each θij without changing
the optimal solution. We now describe the marginal
polytope associated with a MRF.

Let µ denote a vector of marginal probabilities for
each node and edge of the MRF. That is, it includes
µi(xi) ∀i ∈ V and µij(xi, xj) ∀(i, j) ∈ E. The set of µ
that arises from some joint distribution p is referred

to as the marginal polytope, M(G) =

{µ | ∃p(x) : p(xi, xj)=µij(xi, xj), p(xi)=µi(xi)} (1)

The MAP problem now becomes equivalent to the LP:

max
µ∈M(G)

µ · θ=max
µ∈M(G)

∑

ij∈E

∑

xixj

θij(xi, xj)µij(xi, xj) (2)

The constraint that the edge and node marginals must
arise from a valid joint distribution is generally pro-
hibitive to represent. Therefore it is relaxed, yielding
an outer bound on the marginal polytope, also called
the local polytope L(G) ⊇ M(G) as it enforces only
the local consistency on the marginals:

∑

xi

µi(xi) = 1 ∀i ∈ V ;

∑

x̂j

µij(xi, x̂j) = µi(xi) ∀i ∈ V,∀xi,∀j ∈ Nb(i) (3)

The polytope L(G) comprises of all the µ which satisfy
the above constraints. The inner bound I(G) ⊆M(G)
is constructed by assuming the mean-field structure
on the joint distribution [12, 22]. That is, p(x) =∏n

i=1 pi(xi). It is described as follows:

µij(xi, xj) = µi(xi)µj(xj) ∀(i, j) ∈ E
∑

xi

µi(xi) = 1 ∀i ∈ V (4)

The set I(G) includes all the µ that satisfy the above
constraints. The first constraint is non-linear in µ
and, in general, I(G) is non-convex. The relation-
ship among these different formulations and the MAP
is given by:

Proposition 1. The MAP solution quality f! satisfies

f! = max
µ∈M(G)

µ · θ= max
µ∈I(G)

µ · θ ≤ max
µ∈L(G)

µ · θ (5)

This known result [21, 12, 22] shows that optimiz-
ing over I(G) is exact. Furthermore, I(G) can be
compactly represented using only O(n) normalization
constraints for node marginals and O(nk) variables for
each µi(xi).

The Hybrid Set We now present our approach,
which combines the inner bound with the outer bound
resulting in the hybrid set of parameters H(G;Q). It
is parameterized by a set of MRF edges Q. Intuitively,
the non-convexity in the set I(G) arises from the
mean-field constraint that µij(xi, xj) = µi(xi)µj(xj).
The set Q contains all the edges e ∈ E for which the
mean-field constraint is enforced. Let L=E\Q denote
the rest of the edges, which intuitively correspond to
the outer bound constraints. We denote the edges in
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Figure 1: a) Relationship among marginal polytope, inner
and outer bound; b) Hybrid inner-outer bound; c) A grid
graph with dotted links denoting QP edges.

the set Q as QP edges (short for quadratic) and the
edges in L as LP edges. The set H(G;Q) contains all
the µ that satisfy the following constraints:

µij(xi, xj) = µi(xi)µj(xj) ∀(i, j) ∈ Q ;
∑

xi

µi(xi) = 1 ∀i ∈ V ;

∑

x̂j

µij(xi, x̂j) = µi(xi) ∀i,∀xi,∀j ∈ Nbl(i) (6)

where Nbl(i) denotes the LP neighbors of a node i:
Nbl(i) = {j : j ∈ Nb(i) ∧ (i, j) ∈ L}.
Proposition 2. It holds that: maxµ∈I(G) µ · θ ≤
maxµ∈H(G;Q) µ · θ ≤ maxµ∈L(G) µ · θ

Proof. First notice that the mean-field constraint
µij(xi, xj) = µi(xi)µj(xj) for an edge (i, j) auto-
matically enforces the edge consistency constraint∑

x̂i
µij(x̂i, xj)=µj(xj) in both directions. Therefore,

intuitively, the set I(G) is much smaller than the lo-
cal polytope, which only enforces the edge consistency
constraints. The first inequality holds because the
mean-field constraint is not enforced for the LP edges
in H(G;Q). Therefore the set I(G) ⊆ H(G;Q). The
second inequality holds because the mean-field con-
straint is enforced in addition to edge consistency for
the QP edges in Q. Therefore H(G;Q) ⊆ L(G).

The above proposition highlights that the set H(G;Q)
provides a tighter approximation to the MAP than the
local polytope. In fact, by controlling the set of QP
edges Q, the set H(G;Q) provides a hierarchy of re-
laxations ranging from I(G) (when Q = E) to L(G)
(when |Q| = 0). As the size of Q increases, the re-
laxation becomes tighter, but the non-convexity in-
creases. However, since we have control over the de-
gree of non-convexity, a judicious choice of the set Q
will not only make the relaxation tighter, but also pro-
vide a good solution quality with respect to the opti-
mization over the local polytope. Experimentally, we
found this to be the case for almost all the instances.

Fig. 1(a) shows the high-level relationship among the
marginal polytope and the inner and outer bounds
and is based on [22]. Fig. 1(b) shows the hybrid set

H(G;Q), which is qualitatively less non-convex than
the inner bound, thereby decreasing the chances of get-
ting trapped in a poor local optimum and is more ac-
curate than the outer bound L(G). Fig. 1(c) shows a
strategy to select the QP edges set Q. As the outer
bound is tight for tree-structured graphs, we randomly
choose a spanning tree of the graph with all its edges
constituting the set L; the rest are the QP edges. We
can also construct multiple such spanning trees inde-
pendently with L being the union of their edges. Em-
pirically, this method worked well in our experiments.
Proposition 3. As the size of the QP edge set Q
increases by 1, the number of parameters decreases
by O(k2) and the number of constraints decreases by
O(2k).

The above result shows that unlike the previous
cluster-based approaches [19, 1], where the number of
parameters increases exponentially w.r.t. the cluster
size to make the relaxation tighter, the number of pa-
rameters decreases in our hybrid inner-outer bound
based approach as it becomes tighter. This can poten-
tially make the optimization easier at the expense of
losing some convexity.

3 DC Formulation of MAP

First we explain the general DC optimization prob-
lem and briefly describe the concave-convex procedure,
introduced in [26]. Consider the optimization prob-
lem: min{g(x) : x ∈ Ω} where g(x) = u(x) − v(x) is
an arbitrary function with u, v being real-valued, dif-
ferentiable convex functions and Ω being a constraint
set. CCCP was originally proposed for Ω that is de-
scribed by linear equality constraints, but [20] showed
the same idea extends to any constraint set including
non-convex constraints. The CCCP method provides
an iterative procedure that generates a sequence of
points xl by solving the following convex program:

xl+1 = arg min{u(x)− xT∇v(xl) : x ∈ Ω} (7)

Each iteration of CCCP decreases the objective func-
tion g(x) for any Ω [20]. Furthermore, it is guaranteed
to converge to a stationary point where the Karush-
Kuhn-Tucker (KKT) conditions are satisfied when the
constraint set Ω is convex [20]. Note that the objec-
tive g(x) may be non-convex, which makes CCCP a
general approach for non-linear optimization. The op-
timization problem over the set H(G;Q) is described
as minimizing the following function subject to con-
straints Ω of Eq. (6):

g(µ; θ, Q)=−
∑

(i,j)∈Q

∑

xi,xj

θ(xi, xj)µ(xi)µ(xj)−

∑

(i,j)∈L

∑

xi,xj

θ(xi, xj)µ(xi, xj) (8)
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For the sake of readability, we drop the sub-
scripts, using θ(xi, xj) for θij(xi, xj), and µ(xi, xj)
for µij(xi, xj), as long as it is unambiguous. We also
negate the MAP objective to get a minimization prob-
lem. The critical question in this reformulation into a
DC program is how easy it is to perform the CCCP
iteration in Eq. (7). Notice that the first term in
g(µ; θ, Q) is quadratic and neither concave nor convex.
However, noting that all the marginals must be posi-
tive, a simple substitution µ(xi) = ey(xi), where y(xi)
is unconstrained, makes it convex because the function
eh(x) is convex when h(x) is affine. The CCCP proce-
dure has also been applied to optimize the Bethe free
energy of a MRF [27]. Motivated by the fact that neg-
ative entropy of an edge is convex and the constraints
in the outer bound are the same as in the Bethe free
energy, we further perform the following optimality
preserving modifications:

• For each LP edge in L, add and subtract the neg-
ative entropy:
−Hij =

∑
xi,xj

µ(xi, xj) log µ(xi, xj) to g(µ; θ, Q).
• For each node i, add and subtract the term:∑

xi
ey(xi) to g(µ; θ, Q).

The entropy term ensures that all the edge marginals
µij are positive and the exponential term ey(xi) ensures
that all the node marginals are positive as well as sim-
plifies the CCCP iteration. The objective g(µ; θ, Q)
can now be written as the difference two functions u
and v. The function u(µ,y) is defined as:

−
∑

(i,j)∈L

∑

xi,xj

θ(xi, xj)µ(xi, xj)−
∑

(i,j)∈L

Hij +
∑

i,xi

ey(xi) (9)

The function v(µ,y) is defined as:
∑

(i,j)∈Q

∑

xi,xj

θ(xi, xj)ey(xi)+y(xj)−
∑

(i,j)∈L

Hij +
∑

i,xi

ey(xi) (10)

The modified constraint set Ω′ is described by the fol-
lowing non-convex constraints:

∑

xi,xj

µ(xi, xj) = 1 ∀(i, j) ∈ L;

∑

x̂j

µij(xi, x̂j) = ey(xi) ∀i ∈ V,∀xi,∀Nbl(i) (11)

Notice that the constraints in Eq. (11) are different
from those in Eq. (6) that describe H(G;Q). This
is deliberate to simplify the CCCP iteration without
changing the feasible parameter space. First, the fac-
torization constraint µ(xi, xj) = µ(xi)µ(xj) for all
(i, j) ∈ Q is now explicit in the objective (8). Sec-
ond, we impose a restriction that for each node i, there
should be at least a single neighbor j such that edge
(i, j) is an LP edge or (i, j) ∈ L. This restriction will

not allow all the edges to become QP, i.e., Q += E.
The reason for this restriction is that we no longer en-
force the normalization constraint for any node explic-
itly. But the constraints

∑
xj

µ(xi, xj) = ey(xi) and
∑

xi,xj
µ(xi, xj) = 1 directly imply

∑
xi

ey(xi) = 1.
We note that restricting the set Q in this way does
not compromise generality—if we want to make the
set Q = E, then for each MRF node i, we introduce a
dummy node di with a single state and make an edge
(i, di) with every potential being zero. Then we can
add this edge to the LP edges set L. This will sat-
isfy the previous requirement. Also notice that by us-
ing the substitution µ(xi) = ey(xi), we have made the
constraint set non-convex. Let us denote the objective
g(µ; θ, Q) (see Eq. (8)) with the exp-transformation as
g(µ, y; θ, Q). We also refer as Ω to the counterpart of
Ω′ which uses the variables µ(xi) rather than ey(xi).
We now study the properties of the stationary points
of g(µ; θ, Q) and g(µ, y; θ, Q) that will help answer
questions about the convergence properties of CCCP.

Proposition 4. Every stationary point of the problem
min g(µ, y; θ, Q) subject to Ω′ is also a stationary point
of the problem min g(µ; θ, Q) subject to Ω.

The above proposition has interesting consequences.
For the LP relaxation case when |Q|=0, the optimiza-
tion of g(µ; θ, Q) subject to Ω is equivalent to solving
the LP relaxation of MAP and there are no local op-
tima. However, even for the case when |Q| = 0, the
second optimization problem of g(µ, y; θ, Q) over Ω′
is a non-convex optimization problem as the equality
constraints are not linear. However, we have shown
that every stationary point of the second optimization
problem is also a stationary point of the LP, which
shows that there are no local optima in the second
problem even though it is non-convex (only for the
case |Q| = 0). Thus, achieving the stationary point
of the second optimization problem using CCCP will
yield the global optima for the LP relaxation.

Each iteration of CCCP is given by:

min
µ,y

−
∑

(i,j)∈L

∑

xi,xj

θ(xi, xj)µ(xi, xj)−
∑

(i,j)∈L

Hij +
∑

i,xi

ey(xi)

−
∑

(i,j)∈L

∑

xi,xj

µ(xi, xj)∇µ(xi,xj)v −
∑

i∈V,xi

y(xi)∇y(xi)v

subject to constraints Ω′ of Eq. (11), which are non-
convex. Thus it might appear that we may not be able
to optimally solve the CCCP iteration. However this
is remedied by again substituting µ(xi) = ey(xi) back
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to the above problem resulting in:

min
µ,y

−
∑

(i,j)∈L

∑

xi,xj

θ(xi, xj)µ(xi, xj)−
∑

(i,j)∈L

Hij +
∑

i,xi

µ(xi)

−
∑

(i,j)∈L

∑

xi,xj

µ(xi, xj)∇µ(xi,xj)v −
∑

i∈V,xi

log µ(xi)∇y(xi)v

(12)

subject to :
∑

xi,xj

µ(xi, xj) = 1 ∀(i, j) ∈ L;

∑

x̂j

µij(xi, x̂j) = µ(xi) ∀i ∈ V,∀xi,∀Nbl(i) (13)

Note that this re-substitution µ(xi) = ey(xi) is in the
context of CCCP iteration (7); it does not undo the
substitution made in the context of the objective (8)—
in (12) we still have the gradient ∇y(xi)v w.r.t. y(xi).
Furthermore, the above optimization problem is a
standard convex optimization problem with convex ob-
jective and linear equality constraints. Thus there are
no local optima, and strong duality holds as we can
show that Slater’s conditions hold [4].
Proposition 5. CCCP converges to a stationary
point of the problem min g(µ, y; θ, Q) subject to Ω′.

4 Message-Passing Implementation of
CCCP

We now describe how the CCCP iterations can be im-
plemented using a message-passing paradigm. At a
high level, CCCP updates typically require a double
loop. The outer loop computes the gradient ∇v(µl, yl)
and the inner loop solves the optimization problem of
Eq. (12). Both steps can be implemented using mes-
sage passing on the MRF as shown below.

4.1 The Gradient of v(µ, y) and Outer Loop
Message Passing

The gradient w.r.t. y(xi) is given by:

∇y(xi)v(µ, y)=ey(xi)+ey(xi)
∑

j∈Nbq(i)

ey(xj)θ(xi, xj) (14)

where Nb(i) denotes the neighbors of a node i and
Nbq(i) denotes the QP neighbors of a node i: Nbq(i)=
{j : j ∈ Nb(i) ∧ (i, j) ∈ Q}. The second term
in the above equation can be computed using mes-
sage passing on the graph. The other gradient,
∇µ(xi,xj)v(µ, y) = 1 + log µ(xi, xj), does not require
any message passing.

4.2 CCCP Inner Loop and Message Passing

We now describe how to perform the CCCP iteration
of Eq. (12). Because the dual of this optimization

problem is unconstrained and has simpler structure,
we will perform block coordinate ascent in the dual.
First we introduce the following Lagrange multipliers:

λij :
∑

xi,xj

µ(xi, xj)=1; λji(xi) :
∑

x̂j

µij(xi, x̂j)=µ(xi)

The dual function is q(λ) = infµ,y L(µ, y, λ), where
L(·) denotes the Lagrangian. We can solve this opti-
mization problem by solving for the KKT conditions,
resulting in:

µ(xi)=
∇y(xi)v

1 +
∑

k∈Nbl(i)
λki(xi)

µ(xi, xj)=eθ(xi,xj)+∇µ(xi,xj)v+λij(xj)+λji(xi)−λij−1

(15)

Substituting these back into the Lagrangian, we get
the dual. The dual can be maximized iteratively by
using the block coordinate ascent: hold all the λ’s fixed
except one and optimize the dual w.r.t. a single λ [2].
This iterative procedure is also guaranteed to converge
to the optimum of the convex program of Eq. (12).
Proposition 6. The Lagrange multipliers λij, λij(xj)
can be derived by using an inner loop in the CCCP
indexed by τ such that the multipliers for each edge
(i, j) ∈ L are updated once per inner loop. The update
equations are as follows:

λτ+1
ij (xj)=W

( ∇y(xj)v e
P

k∈Nbl(j)\i λτ
kj(xj)+1

∑
xi

eθ(xi,xj)+∇µ(xi,xj)v+λτ
ji(xi)−λτ

ij−1

)

− 1−
∑

k∈Nbl(j)\i

λτ
kj(xj) (16)

eλτ+1
ij =

∑

xi,xj

eθ(xi,xj)+∇µ(xi,xj)v+λτ
ij(xj)+λτ

ji(xi)−1 (17)

where W (·) is the Lambert W-function.

The Lambert W-function is the multi-valued inverse of
the function w ,→ wew and is useful in many engineer-
ing applications such as jet fuel planning and enzyme
kinematics [5] . In our case, the argument of W (·) in
Eq. (16) is always positive and the W-function is prop-
erly defined over this range. Furthermore, these dual
updates can be reinterpreted in terms of the primal
parameters, which alleviates the need to store the La-
grange multipliers explicitly and greatly simplifies the
implementation. The proof is given in the supplemen-
tary material. The message-passing procedure is de-
tailed in Alg. 1. The superscripts on parameters (e.g.
Zτ ) differentiate between the old parameters and the
new updated ones. The function Normalize(·) normal-
izes a distribution by dividing each element by their
sum. The inner loop convergence is detected by check-
ing if the node and edge marginals sum up to 1, with
some tolerance allowed (10−3).
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Algorithm 1: Graph-based message passing for MAP
input: Graph G = (V, E) and potentials θij per edge
repeat1

Send message δ to j ∈ Nbq(i):2

δi→j(xj) =
P

xi
µ(xi)θ(xi, xj) for each node i ∈ V

∇y(xi)v = µ(xi)
`
1 +

P
j∈Nbq(i) δj→i(xi)

´
∀i ∈ V3

Initialize µ0(xi) = ∇y(xi)v ∀i ∈ V ,4

µ0(xi, xj) = µ(xi, xj)e
θ(xi,xj) ∀(i, j) ∈ L

repeat5

foreach edge (i, j) ∈ L do6

Normalize
`
µτ (xi, xj)

´
7

Zτ (xj) = ∇y(xj) exp
`∇y(xj)v

µτ (xj)

´
/

P
xi

µτ (xi, xj)8

µτ+1(xi, xj)=9

µτ (xi, xj) exp

„
W (Zτ (xj))−

∇y(xj)v

µτ (xj)

«

µτ+1(xj) = ∇y(xj)v/W (Zτ (xj))10

Repeat steps 8 to 10 analogously for node xi11

until inner loop converges12

until outer loop converges13

return: The decoded complete integral assignment

Complexity From Proposition 3, the total number
of parameters is O(k2|L|+nk), where k is the domain
size. The total space complexity of Alg. 1, including
the space for the δ messages, is O(k2|L|+ nk + |Q|k).
The time complexity is O

(
Tk2

(
|Q| + I|L|

))
where T

denotes the total number of outer loop iterations and
I denotes the total number of inner loop iterations.

4.3 DC programs and proximal minimization

We now highlight a close relationship between DC pro-
grams, CCCP and proximal minimization algorithms
based on Bregman divergence. Proximal minimiza-
tion schemes solve a convex program minµ∈Ω g(µ) in-
directly via a sequence of problems of the form [11]:

µn+1 = arg min
µ∈Ω

{
g(µ) +

1
ωn

Df (µ||µn)
}

(18)

where Df is a generalized distance function and ωn

a positive weight. We focus on Bregman divergence
based distance function defined as Df (µ||ν) = f(µ)−
f(ν)−〈∇f(ν), µ−ν〉, where f is a strictly convex, dif-
ferentiable function (also called a Bregman function).
Proposition 7. Each proximal iteration with Breg-
man divergence based distance function and a fixed
weight ω is equivalent to the CCCP iteration for the
DC program minµ∈Ω{u(µ)−v(µ)} where u(µ) = g(µ)+
1
ω f(µ) and v(µ) = 1

ω f(µ).

Note that the DC program in the above proposi-
tion is equivalent to the original convex program
minµ∈Ω g(µ). We also note that the weights ωn can be
adjusted for faster convergence in proximal schemes,
but they can also be set to constant as the Breg-
man distance function Df itself converges to zero as

the algorithm approaches the optimum [11]. Fur-
thermore, the DC program view can also simulate
changing weight scenario as the DC decomposition
u(µ) = g(µ) + 1

ω f(µ) and v(µ) = 1
ω f(µ) is valid for

any weight ω. Ravikumar et al. [11] propose several
globally convergent algorithms to solve the LP relax-
ation based on different choices of the Bregman func-
tion f such as entropic, quadratic, etc. Such algo-
rithms can be interpreted as DC programs. Moreover,
the proximal minimization schemes are only applicable
to convex functions, while DC programs need not be
convex and are therefore more general. Nonetheless,
the connection we established is important. For exam-
ple, CCCP is generally considered to have a first-order
convergence rate [15]. However Bregman projections
for certain choices of Bregman functions have fast su-
perlinear convergence [11], implying a similar conver-
gence rate for CCCP too in these cases. To recast the
proximal iteration of Eq. (18) as Bregman projections,
the Bregman functions are restricted to be of Legendre
type in [11]. This prohibits them from using a tree-
reweighted entropy-based Bregman function. However
the DC view of the proximal approach does not pose
this restriction and any Bregman function can be used.

5 Experiments

We experimented on two datasets: Binary integer
quadratic (Biq) problems publicly available from the
Biq Mac library [14, 13] and 50 × 50 2D grid graphs
with potentials set using the Potts and Ising mod-
els similar to [11, 18]. We compared several algo-
rithms including CCCP, entropic proximal solver (EP)
from [11], MPLP with cluster based tightening [19]
and max-product (MP) [10]. All the algorithms ex-
cept MPLP were implemented in JAVA; MPLP’s code
was provided by the authors and the standard settings
were used. Our main goal in these experiments was
twofold: a) show that the optimization over the hy-
brid bound H(G;Q) provides a tighter approximation
of the MAP problem and a significantly better solution
quality than LP relaxation over the outer bound; and
b) show that CCCP converges to a global optimum of
the LP relaxation over the outer bound by compar-
ing its quality against EP, which optimizes the same
objective function.

Table 1 shows the results for the Biq benchmarks.
These benchmarks are particularly interesting in that
the LP relaxation on these problems is loose. There-
fore tightening the outer bound is particularly ben-
eficial. The last two columns show time (in sec.),
while the other columns show the best quality achieved
for a given instance. For details on generating these
Biq problems and formulating them as MRFs we refer
to [14, 13]. The CCCP algorithm over the hybrid set
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Table 1: Quality and runtime comparisons for the Biq benchmarks. ‘Inst.’ is the instance name and ‘Opt.’ is the known
optimal quality from [14]. ‘–’ denotes failure of the algorithm to produce a solution.

Inst. Opt. CCQP |L| CCQP" MPLP MPLP" CCCP CCCP" EP EP" Tccqp/r Tmplp
100-1 7970 7970 0.553 7963.9 7594 8743.8 7634 10147.6 7634 10183.5 4.26/0 3.6
100-2 11036 11036 0.512 11035.9 10866 11341 10976 12231.1 11014 12228.41 33.4/1 10.1
100-3 12723 12723 0.514 12722.9 12723 12988.1 12723 13652.5 12723 13598.1 0.07/0 62.5
100-4 10368 10368 0.532 10367.7 10076 10728.1 10172 12044.9 10172 12059.2 2.40/0 4.4
100-5 9083 9083 0.562 9082.9 8685 9506.8 8914 10629.9 8914 10613.9 14.4/1 5.8
100-6 10210 10210 0.533 10099.9 9704 11553.7 10210 12937.6 10210 13045.3 6.9/1 3.5
100-7 10125 10125 0.554 10054.6 9952 10904.4 9977 11978.3 9977 11973.7 3.9/1 2.8
100-8 11435 11435 0.528 11434.6 11310 11793.8 11397 12615.4 11397 12436.1 4.6/0 3.3
100-9 11455 11455 0.533 11454.9 11361 11628.4 11368 12259.6 11348 12219.2 5.8/0 3.6
100-10 12565 12565 0.536 12564.6 12459 12831.1 12511 13676.8 12511 13617.9 40.3/0 6.1

250-1 45607 45607 0.477 45606.9 41862 54477.5 44872 77827.5 44956 77382.8 56.1/0 4498.1
250-2 44810 44810 0.484 44506.4 38659 55664.5 44234 77469.2 44234 77314.6 209.5/2 775.9
250-3 49037 49037 0.477 49011.6 44954 57118.4 48980 80278.5 48980 80015.4 3.98/1 822.1
250-4 41274 41274 0.474 41273.4 34670 51687.8 41124 74784.7 40637 74608.7 146.2/5 6164.9
250-5 47961 47939 0.520 47938.9 44461 56607.6 47843 79256.0 47843 78912.9 196.1/7 2708.8
250-6 41014 41014 0.475 39748.4 34092 53157.7 40225 77758.0 40225 77617.2 289.1/11 1271.5
250-7 46757 46757 0.477 46521.6 41974 56397.7 46449 79393.9 46431 79075.1 61.1/0 1992.5
250-8 35726 35336 0.489 35504.1 29312 49492.6 34656 72101.1 34656 71896.3 380.4/6 477.4
250-9 48916 48916 0.473 48907.6 44057 58305.3 48677 81115.7 48615 80684.5 353.5/0 3236.1
250-10 40442 40330 0.497 40032.6 32534 52525.6 40194 75142.7 40198 74783.1 116.8/7 908.1

1b.20 133 133 0.197 96.9 98 260.7 98 394.5 98 387.2 1.4/0 0.82
2b.30 121 121 0.121 86.9 67 345.7 65 505.8 65 504.2 2.2/0 0.08
3b.40 118 118 0.097 46.1 102 416.3 102 612.1 102 609.1 66.6/0 240.4
4b.50 129 129 0.079 23.1 85 548.3 54 799.8 54 797.5 3.7/0 702.7
5b.60 150 150 0.065 46.7 88 632.6 150 922.1 150 918.0 0.17/0 71.9
6b.70 146 133 0.057 14.8 63 758.1 62 1101.6 62 1099.6 49.2/0 714.16
7b.80 160 160 0.050 14.8 122 840.1 54 1220.1 54 1218.4 28.3/0 66.5
8b.90 145 145 0.040 13.8 58 1435.5 72 1389.4 72 1386.7 47.7/0 0.27
9b.100 137 135 0.032 12.9 58 1656.5 120 1599.6 120 1597.1 36.7/0 0.37
10b.125 154 154 0.044 10.8 – – 104 1898.3 104 1895.6 84.9/0 –

H(G;Q) with |Q|>0 is called ‘CCQP’. When optimiz-
ing the LP relaxation (|Q|= 0), we simply refer to it
as ‘CCCP’. An asterisk (*) for a given algorithm de-
notes the best objective the algorithm achieved upon
convergence (can be fractional); the name without it
shows the decoded integral assignment. For exam-
ple, MPLP* denotes the upper bound which MPLP
minimizes, whereas MPLP denotes the integral qual-
ity. We chose Biq problems with a varying number
of nodes and edge densities. The instances ‘100-1’
to ‘100-10’ have 100-node graphs with edge density
0.1, and edge potentials in the range [−200, 200] (re-
ferred to as ‘bqp100-i’ in [13]). The instances ‘250-
1’ to ‘250-10’ have 250-node graphs with edge density
0.1 (‘bqp250-i’ in [13]). The instances 1b.n to 10b.n are
complete graphs (density 1) with ‘n’ denoting the num-
ber of nodes (‘gkaib.n’ in [13]). We used the decoding
scheme of [12] for all the CCCP and EP algorithms.

Our hybrid bound based approach ‘CCQP’ performs
quite well in this dataset and achieves the optimal solu-
tion for 26 out of 30 instances. The column ‘|L|’ shows
the fraction of the LP edges (|L|/|E|) in the hybrid
bound. We selected the LP edges using the strategy
shown in Fig. 1(c): construct randomly a number of
independent spanning tress and make L the union of
their edges. For instances ‘100-1’ to ‘250-10’, we used
8 spanning trees and for instances ‘1b.n’ to ‘10b.n’,
only 2 trees were required. Despite such low fraction
of LP edges, our approach returns optimal solutions
indicating that a judicious choice of the LP edges can

mitigate the adverse effect of non-convexity. This ob-
servation is further reinforced by noting the fractional
objective under ‘CCQP*’, which is quite close to the
true optimum. On the other hand, the relaxed LP ob-
jective (under ‘CCCP*’ and ‘EP*’) seems to be loose,
specially for ‘250-i’ and ‘gka’ instances. The minor
differences between ‘CCCP*’ and ‘EP*’ are mainly be-
cause the normalization constraints were enforced only
to an accuracy of 10−3 for faster convergence. The
decoded solution quality for CCCP and EP is not as
good as CCQP. MPLP provides tighter upper bounds
than CCCP (under ‘MPLP*’), but it fails to translate
it into good solution quality as the upper bounds are
still loose when compared to the true optimum.

The last two columns provide runtime comparisons be-
tween CCQP and MPLP. The total outer loop itera-
tions in CCQP was fixed to 1100 and inner loop iter-
ations to 60. MPLP was run for 2 hours. The time in
these columns shows when the best integral solution
quality was first achieved for each algorithm. In ad-
dition, for CCQP, the performance was dependent on
the choice of spanning trees. Therefore we reported
the best of 12 runs. The r value in ‘Tccqp/r’ denotes
the best run. For most instances, CCQP was quite ro-
bust. For the ‘250-i’ dataset, a higher number of runs
was required. These instances are also the most diffi-
cult of all the instances even for the optimal approach
of [14], which required ≈ 4500 sec. at the minimum
and up to 316000 sec. for some instances. CCQP on
the other hand terminates within ≈ 650 sec. for all
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Figure 2: Quality comparison for 50× 50 grids: a) Potts model with variable domain size 4 and b) with domain size 8;
c) Ising model (domain size = 2). The x-axis shows the coupling parameter β and y-axis the normalized quality.

the ‘250-i’ instances. The complete set of results for
max-product in shown in the supplementary material.
MP converges and achieves good quality for the ‘100-
i’, ‘250-i’ instances, but for ‘gka’ instances it performs
poorly achieving a quality of 0 for most instance.

We also experimented with grid graphs with edge po-
tentials set using the Potts model [11] and the Ising
model [18]. For both models, the edge potentials
were sampled from U [−β, β] for each edge indepen-
dently where β is the coupling strength parameter.
The unary potentials were sampled from U [−1, 1]. For
these graphs, MPLP performs quite well in minimizing
the upper bound. Therefore we report normalized val-
ues for all the algorithms in Fig. 2(a–c) where the best
MPLP upper bound (U.B.) is denoted as 1. Fig. 2(a,b)
show that CCQP again achieves better solution qual-
ity than the LP relaxation (CCCP, EP). The decoded
quality is within 98.5% of optimal for all the set-
tings. For the Potts graphs, CCQP used 2 spanning
trees for the set L with the fraction of LP edges be-
ing ≈ .75. The CCQP fractional objective (‘CCQP*’)
is very close to the MPLP U.B., which further con-
firms that the outer bound is tightened significantly
using QP edges. The plots for ‘CCCP*’ and ‘EP*’ al-
most overlap, which shows that CCCP converges to
the same quality as EP for the LP relaxation. For the
Ising graphs (Fig. 2(c)), CCQP provides better quality
(within 97% of the optimal on average) than all the
other algorithms including MPLP. Interestingly, the
performance of CCQP improved with a lower fraction
of LP edges (≈ .45) than in the Potts model. This can
be explained by the relaxed LP objective (‘CCQP*’ or
‘EP*’), which is relatively loose (≈ 1.25) as opposed
to (≈ 1.06) in Potts. Therefore, a higher fraction of
QP edges is required to tighten the outer bound. This
can also help explain the deteriorated performance of
MPLP, which may need even higher order clusters to
further tighten the outer bound. MP provided the
worse quality for all these problems and is not plotted
for clarity sake. The normalized quality MP achieves
for each coupling strength parameter setting is: (0.99,
0.93, 0.82, 0.77, 0.75) for the Potts model with domain
size 4 and (0.99, 0.94, 0.89, 0.82, 0.77) with size 8. For

the Ising graphs, it was (0.60, 0.63, 0.62, 0.61, 0.61).
Thus CCQP provided consistent and much better per-
formance than MP.

6 Conclusion and Future Work

We present a flexible framework for tightening the
outer bound on the MAP marginal polytope by com-
bining it with the inner bound. This hybrid bound
is parameterized by a set of edges such that on one
extreme it resembles the exact but non-convex inner
bound and on the other extreme it becomes the well-
known LP relaxation for MAP. We formulated the op-
timization over this hybrid bound as a DC program
and used the concave-convex procedure to derive a
convergent message-passing algorithm, guaranteed to
solve the LP relaxation optimally. We also identified a
close relationship between the MAP DC formulations
and the Bregman divergence based proximal methods.
Our experiments show that the hybrid bound approxi-
mates the MAP significantly better than the marginal
polytope despite its non-convexity, and it achieves the
optimal solution on a range of problems.

Our approach presents notable opportunities for fu-
ture work. Our current scheme of tightening the
outer bound is static in that the QP edges set is pre-
determined before the optimization procedure. This
can be significantly improved by taking an adap-
tive tightening approach similar to cluster pursuit
based methods [19]. Furthermore, the DC program-
ming framework and CCCP allow for including ad-
ditional constraints for the given optimization prob-
lem. We plan to develop message-passing algorithms
that tighten the outer bound using additional con-
straints based on the cut polytope [17]. These en-
hancements could further improve the performance of
our approach.

Acknowledgments

This work was funded in part by the NSF grants IIS-
1116917, IIS-1160424; Marc Toussaint was supported by
the German Research Foundation (DFG), Emmy Noether
fellowship TO 409/1-3 and SPP grant TO 409/7-1.



Kumar, Zilberstein, Toussaint

References

[1] Dhruv Batra, Sebastian Nowozin, and Pushmeet
Kohli. Tighter relaxations for MAP-MRF inference:
A local primal-dual gap based separation algorithm.
In International Conf. on Artificial Intelligence and
Statistics, pages 146–154, 2011.

[2] Dimitri P. Bertsekas. Nonlinear Programming. Athena
Scientific, Cambridge, MA, USA, 1999.

[3] Julian Besag. Spatial interaction and the statistical
analysis of lattice systems. Journal of the Royal Sta-
tistical Society. Series B, 36(2):192–236, 1974.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Op-
timization. Cambridge University Press, New York,
NY, USA, 2004.

[5] R. M. Corless, G. H. Gonnet, D. G. Hare, D. J. Jef-
frey, and D. E. Knuth. On the Lambert W function.
Advances in Computational Mathematics, 5:329–359,
1996.

[6] Amir Globerson and Tommi Jaakkola. Fixing Max-
Product: Convergent message passing algorithms for
MAP LP-relaxations. In Advances in Neural Informa-
tion processing Systems, pages 553–560, 2007.

[7] Vladimir Jojic, Stephen Gould, and Daphne Koller.
Accelerated dual decomposition for MAP inference.
In International Conf. on Machine Learning, pages
503–510, 2010.

[8] V Kolmogorov. Convergent tree-reweighted message
passing for energy minimization. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 28:
1568–1583, 2006.

[9] N. Komodakis, N. Paragios, and G. Tziritas. MRF
energy minimization and beyond via dual decompo-
sition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(3):531 –552, 2011.

[10] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann Publishers Inc., 1988.

[11] Pradeep Ravikumar, Alekh Agarwal, and Martin J.
Wainwright. Message-passing for graph-structured
linear programs: Proximal methods and rounding
schemes. Journal of Machine Learning Research, 11:
1043–1080, 2010.

[12] Pradeep Ravikumar and John Lafferty. Quadratic
programming relaxations for metric labeling and
Markov random field MAP estimation. In Interna-
tional Conf. on Machine Learning, pages 737–744,
2006.

[13] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele.
Biq Mac Solver – binary quadratic and max-cut solver,
2010. URL http://biqmac.uni-klu.ac.at/.

[14] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele.
Solving Max-Cut to optimality by intersecting
semidefinite and polyhedral relaxations. Mathemat-
ical Programming, 121(2):307–335, 2010.

[15] Ruslan Salakhutdinov, Sam Roweis, and Zoubin
Ghahramani. On the convergence of bound optimiza-
tion algorithms. In International Conf. on Uncer-
tainty in Artificial Intelligence, pages 509–516, 2003.

[16] David Sontag, Amir Globerson, and Tommi Jaakkola.
Introduction to dual decomposition for inference. Op-
timization for Machine Learning, 2010.

[17] David Sontag and Tommi Jaakkola. New outer
bounds on the marginal polytope. In Advances in
Neural Information Processing Systems, 2007.

[18] David Sontag and Tommi Jaakkola. New outer
bounds on the marginal polytope. In Advances in Neu-
ral Information Processing Systems, pages 1393–1400,
2008.

[19] David Sontag, Talya Meltzer, Amir Globerson, Tommi
Jaakkola, and Yair Weiss. Tightening LP relaxations
for MAP using message passing. In International
Conf. on Uncertainty in Artificial Intelligence, pages
503–510, 2008.

[20] Bharath Sriperumbudur and Gert Lanckriet. On
the convergence of the concave-convex procedure. In
Advances in Neural Information Processing Systems,
pages 1759–1767, 2009.

[21] Martin Wainwright, Tommi Jaakkola, and Alan Will-
sky. MAP estimation via agreement on (hyper)trees:
Message-passing and linear programming approaches.
IEEE Transactions on Information Theory, 51:3697–
3717, 2002.

[22] Martin J. Wainwright and Michael I. Jordan. Graphi-
cal models, exponential families, and variational infer-
ence. Foundations and Trends in Machine Learning,
1:1–305, 2008.

[23] T. Werner. A linear programming approach to max-
sum problem: A review. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 29(7):1165–
1179, 2007.

[24] Tomás Werner. High-arity interactions, polyhedral re-
laxations, and cutting plane algorithm for soft con-
straint optimisation (MAP-MRF). In Conf. on Com-
puter Vision and Pattern Recognition, 2008.

[25] Chen Yanover, Talya Meltzer, and Yair Weiss. Lin-
ear programming relaxations and belief propagation
– an empirical study. Journal of Machine Learning
Research, 7:1887–1907, 2006.

[26] A. L. Yuille and Anand Rangarajan. The concave-
convex procedure. Neural Computation, 15:915–936,
2003.

[27] Alan L. Yuille. CCCP algorithms to minimize the
bethe and kikuchi free energies: Convergent alterna-
tives to belief propagation. Neural Computation, 14:
1691–1722, 2002.



Message-Passing Algorithms for MAP Estimation Using DC
Programming (Supplementary Material)

Akshat Kumar Shlomo Zilberstein Marc Toussaint
Univ. of Massachusetts Amherst Univ. of Massachusetts Amherst Freie Universität Berlin

A Detailed Proofs and Derivations

A.1 Proposition 3

For the QP edges, it holds that µij(xi, xj) =
µi(xi)µj(xj). Instead of having a linear objective func-
tion (µ·θ), we can substitute µij(xi, xj) by µi(xi)µj(xj)
in the objective. Thus we no longer need to store the
parameter µij(xi, xj) nor the mean-field constraint ex-
plicitly for QP edges. Therefore, the total number of
parameters is O(k2|L| + nk) and the total number of
constraints is O(2|L|k + n) where L=E\Q. As the size
of Q increases by 1, the size of the set L decreases by 1.
This proves the proposition.

A.2 Proposition 4

The optimization problem involving the function
g(µ, y; θ, Q) over Ω′ is given by1:

min
µ,y

−
∑

(i,j)∈Q

∑

xi,xj

θ(xi, xj)ey(xi)+y(xj)−

∑

(i,j)∈L

∑

xi,xj

θ(xi, xj)µ(xi, xj) (19)

subject to :
∑

xi,xj

µ(xi, xj) = 1 ∀(i, j) ∈ L;

∑

x̂j

µij(xi, x̂j) = ey(xi) ∀i ∈ V,∀xi,∀Nbl(i) (20)

The Lagrangian L(µ, y,λ) is given by:

L(µ, y,λ) = −
∑

(i,j)∈Q

∑

xi,xj

θ(xi, xj)ey(xi)+y(xj)−

∑

(i,j)∈L

∑

xi,xj

θ(xi, xj)µ(xi, xj) +
∑

ij

λij

{ ∑

xi,xj

µ(xi, xj)− 1
}

+
∑

i∈V

∑

j∈Nbl(i)

∑

xi

λji(xi)
{ ∑

xj

µij(xi, xj)− ey(xi)

}

(21)

Notice that in the above Lagrangian, we ignored the
nonnegativity constraints associated with µ(xi, xj) ≥ 0

1Equation numbers continue the main paper.

for simplicity as they remain the same for both versions
of the optimization problem. Now the KKT conditions
for the stationary point are given by:

∂L

∂µ(xi, xj)
= −θ(xi, xj) + λij + λji(xi) + λij(xj) = 0

(22)

The second KKT condition is:

∂L

∂y(xi)
= −

∑

j∈Nbq(i)

∑

xj

θ(xi, xj)ey(xi)+y(xj)−

∑

j∈Nbl(i)

λji(xi)ey(xi) = 0 (23)

which can be further simplified to:

∑

j∈Nbq(i)

∑

xj

θ(xi, xj)ey(xj) +
∑

j∈Nbl(i)

λji(xi) = 0 (24)

Now consider the second optimization problem of opti-
mizing g(µ; θ, Q) over Ω given as:

min
µ,y

−
∑

(i,j)∈Q

∑

xi,xj

θ(xi, xj)µ(xi)µ(xj)−

∑

(i,j)∈L

∑

xi,xj

θ(xi, xj)µ(xi, xj) (25)

subject to :
∑

xi,xj

µ(xi, xj) = 1 ∀(i, j) ∈ L;

∑

x̂j

µij(xi, x̂j) = µ(xi) ∀i ∈ V,∀xi,∀Nbl(i) (26)

Notice that every feasible point (µ′, y′) ∈ Ω′ of the first
optimization problem can be transformed into a unique
feasible point µ ∈ Ω of the second problem simply by
setting µ(·, ·) = µ′(·, ·) and setting µ(·) = ey(·). Thus
each stationary point of the first optimization problem
is a feasible point of the second problem. We now show
that this feasible point indeed satisfies the KKT condi-
tions of the second optimization problem too, thus prov-
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ing the proposition. The Lagrangian L(µ,λ) is given by:

L(µ,λ) = −
∑

(i,j)∈Q

∑

xi,xj

θ(xi, xj)µ(xi)µ(xj)−

∑

(i,j)∈L

∑

xi,xj

θ(xi, xj)µ(xi, xj) +
∑

ij

λij

{ ∑

xi,xj

µ(xi, xj)− 1
}

+
∑

i∈V

∑

j∈Nbl(i)

∑

xi

λji(xi)
{ ∑

xj

µij(xi, xj)− µ(xi)
}

(27)

Now the KKT conditions for the stationary point are:

∂L

∂µ(xi, xj)
= −θ(xi, xj) + λij + λji(xi) + λij(xj) = 0

(28)

The above KKT condition matches exactly with the
KKT condition of Eq. (22).

The second KKT condition is:

∂L

∂µ(xi)
=−

∑

j∈Nbq(i)

∑

xj

θ(xi, xj)µ(xj)−
∑

j∈Nbl(i)

λji(xi)=0

(29)

The above condition is also exactly the same as of the
condition in Eq. (24) by noting that µ(xj) = ey(xj).
Thus we have shown that every stationary point of the
first optimization problem is a feasible point of the sec-
ond optimization and also satisfies the KKT conditions.

A.3 Proposition 5

The above proposition can be proved using Zangwill’s
global convergence theorem [2] which has been used to
prove the convergence of CCCP for the convex con-
straints [1, Thm. 4]. They also show another variant
of CCCP with non-convex constraints also converges to
a stationary point [1, Sec. 4.1]. In our case, we wish
to prove the convergence of CCCP for the optimization
problem min g(µ, y; θ, Q) of Eq. (19) over constraints
Ω′ of Eq. (20). In principle, we can use the analysis
of [1, Sec. 4.1] that handles CCCP with non-convex
constraints, however we do not use the variant of CCCP
presented in that section as we have non-convex equal-
ity constraints rather than D.C. inequality constraints.
For a brief overview of the Zangwill’s theorem, we refer
to [1, Thm. 2]. We will also use some background terms
from [1] such as the notion of point-to-set map, details
can be found in that paper.

Roughly speaking, the CCCP iteration of Eq. (12) de-
fines a point-to-set map xl+1 =Acccp(xl) where Acccp is
the optimization problem of Eq. (12). The main idea
to prove the convergence of CCCP is two fold. First we
show that a fixed point of Acccp is also a stationary point

of the D.C. program of Eq. (19). The fixed point x! of
Acccp is given by the condition x! = Acccp(x!). This
can be easily shown by writing the KKT conditions for
Acccp at x! and showing that they also satisfy the KKT
conditions for the D.C. program of Eq. (19) similar to
Appendix A.2. This condition holds in our case; we skip
the proof for brevity.

The second step is to show that the limit points of any
sequence {xl}∞l=0 generated by Acccp are the fixed points
of Acccp. This can be shown by using the conditions
of [1, Thm. 2]. We do not show the proof in detail as
it is similar to the proof of convergence of CCCP with
convex constraints [1, Thm. 4]. We provide high level
arguments as follows. The main reason is that although
our original D.C. program of Eq. (19) has non-convex
constraints, the CCCP iteration Acccp we proposed in
Eq. (12) is a convex optimization problem with linear
equality constraints. Therefore the convergence of Acccp

is implied by [1, Thm. 4], which only requires Acccp

to be a convex optimization problem and be uniformly
compact on the constraint set. We also highlight that
the [1, Remark 7] holds in our case as the constraint set
for Acccp in Eq. (13) is compact.

A.4 Reinterpretation of the dual updates in
terms of primal parameters

This appendix derives the updates used in the inner loop
of Alg. 1. Let each step of dual coordinate ascent be
indexed by superscripts τ starting from zero. Initially,
we set all multipliers λs to zero. Let the outer loop
iterations be indexed by subscripts n and let the current
outer loop iteration be n + 1. So we have:

µ(xi, xj) = e
{

θ(xi,xj)+∇µ(xi,xj)v+λij(xj)+λji(xi)−λij−1
}

µ0(xi,xj) = µn(xi,xj) exp
{
θ(xi,xj)

}

µ(xi) =
∇y(xi)v

1 +
∑

k∈Nbl(i)
λki(xi)

µ0(xi) = ∇y(xi)v

For any inner loop iteration τ , we can realize the inter-
mediate beliefs as:

µτ (xi) =
∇y(xi)v

1 +
∑

k∈Nbl(i)
λτ

ki(xi)

µτ (xi, xj) = µn(xi, xj)e
{

θ(xi,xj)+λτ
ij(xj)+λτ

ji(xi)−λτ
ij

}

Let us first consider the dual update for λτ+1
ij (xj).

λτ+1
ij (xj) = W

[ ∇y(xj)v e
P

k∈Nbl(j)\i λτ
kj(xj)+1

∑
xi

µn(xi, xj) exp{θ(xi, xj) + λτ
ji(xi)− λτ

ij}
]

−1−
∑

k∈Nbl(j)\i

λτ
kj(xj)
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We can simplify the argument Zτ of the lambert W -
function as follows:

Zτ =
∇y(xj)v e

P
k∈Nbl(j)\i λτ

kj(xj)+1

∑
xi

µn(xi, xj) exp{θ(xi, xj) + λτ
ji(xi)− λτ

ij}
eλτ

ij (xj)
eλτ

ij (xj)

Zτ =
∇y(xj)v e

P
k∈Nbl(j) λτ

kj(xj)+1

∑
xi

µn(xi, xj) exp{θ(xi, xj) + λτ
ij(xj) + λτ

ji(xi)− λτ
ij}

Zτ =
∇y(xj)v exp{

∇y(xj)

µτ (xj)
}

∑
xi

µτ (xi, xj)

So now we have new λτ+1
ij (xj) as:

λτ+1
ij (xj) = W

[
Zτ

]
− 1−

∑

k∈Nbl(j)\i

λτ
kj(xj)

Using the above equation to calculate the new µτ+1(xj),
we have:

µτ+1(xj) =
∇y(xj)v

1 +
∑

k∈Nbl(j)\i λτ
kj(xj) + λτ+1

ij (xj)

µτ+1(xj) =
∇y(xj)v
W[Zτ ]

The only other quantity affected by λτ+1
ij (xj) is

µτ+1(xi, xj). We have:

µτ+1(xi, xj) = µn(xi, xj)e
{

θ(xi,xj)+λτ
ji(xi)−λτ

ij

}
eλτ+1

ij (xj)

= µn(xi, xj)e
{

θ(xi,xj)+λτ
ji(xi)−λτ

ij

}
eW [Z]

e1+
P

k∈Nbl(j)\i λτ
kj(xj)

Multiplying and dividing the above expression by
eλτ

ij(xj), we get

=µn(xi, xj)e
{

θ(xi,xj)+λτ
ij(xj)+λτ

ji(xi)−λτ
ij

}
eW [Z]

e1+
P

k∈Nbl(j) λτ
kj(xj)

µτ+1(xi,xj)=µτ (xi,xj) exp
(
W[Zτ ]−

∇y(xj)v
µτ (xj)

)

A.5 Proposition 7

Substituting the definition of Bregman function in
Eq. (18) we get the proximal iteration as:

µn+1 = arg min
µ∈Ω

{
g(µ) +

1
ω

(
f(µ)− f(µn)

−∇f(µn)µ +∇f(µn)µn

)}

= arg min
µ∈Ω

{
g(µ) +

1
ω

(
f(µ)−∇f(µn) · µ

)}

Consider the D.C. program:

min
µ∈Ω

{u(µ)− v(µ)}

equivalent to the original problem minµ∈Ω g(µ) with
u(µ) = g(µ) + 1

ω f(µ) and v(µ) = 1
ω f(µ). The CCCP

iteration of Eq. (7) is given as:

arg min
µ∈Ω

{g(µ) +
1
ω

f(µ)− 1
ω
∇f(µn) · µ}

which is equivalent to the previous proximal scheme it-
eration.

B Experimental Results for Max-
Product for Biq Instances

Table 1 shows the complete set of results, detailing the
solution quality achieved by max-product.

Table 1: Solution quality comparisons for max-product

Instance Optimal MP
100-1 7970 7822
100-2 11036 11036
100-3 12723 12723
100-4 10368 10368
100-5 9083 9083
100-6 10210 10065
100-7 10125 10034
100-8 11435 11435
100-9 11455 11455
100-10 12565 12565

250-1 45607 45607
250-2 44810 44810
250-3 49037 49037
250-4 41274 41270
250-5 47961 47961
250-6 41014 41014
250-7 46757 46757
250-8 35726 34450
250-9 48916 48916
250-10 40442 40442

1b.20 133 0
2b.30 121 0
3b.40 118 0
4b.50 129 0
5b.60 150 0
6b.70 146 61
7b.80 160 0
8b.90 145 0
9b.100 137 0
10b.125 154 0
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