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Abstract

Decentralized POMDPs provide an expressive framework for multiagent sequential de-
cision making. However, the complexity of these models—NEXP-Complete even for two
agents—has limited their scalability. We present a promising new class of approxima-
tion algorithms by developing novel connections between multiagent planning and machine
learning. We show how the multiagent planning problem can be reformulated as inference
in a mixture of dynamic Bayesian networks (DBNs). This planning-as-inference approach
paves the way for the application of efficient inference techniques in DBNs to multiagent
decision making. To further improve scalability, we identify certain conditions that are suf-
ficient to extend the approach to multiagent systems with dozens of agents. Specifically, we
show that the necessary inference within the expectation-maximization framework can be
decomposed into processes that often involve a small subset of agents, thereby facilitating
scalability. We further show that a number of existing multiagent planning models satisfy
these conditions. Experiments on large planning benchmarks confirm the benefits of our
approach in terms of runtime and scalability with respect to existing techniques.

1. Introduction

Decentralized partially observable MDPs (Dec-POMDPs) have emerged in recent years as
a prominent framework for modeling sequential decision making by a team of collaborat-
ing agents (Bernstein, Givan, Immerman, & Zilberstein, 2002). Their expressive power
makes it possible to tackle coordination problems in which agents must act based on differ-
ent partial information about the environment and about each other so as to maximize a
global reward function. Applications of Dec-POMDPs include coordinating the operation of
planetary exploration rovers (Becker, Zilberstein, Lesser, & Goldman, 2004), coordinating
firefighting robots (Oliehoek, Spaan, & Vlassis, 2008), target tracking by a team of sensor
agents (Nair, Varakantham, Tambe, & Yokoo, 2005) and improving throughput in wireless
networks (Pajarinen, Hottinen, & Peltonen, 2014).

While there has been rapid progress with exact algorithms for Dec-POMDPs (Oliehoek,
Spaan, Amato, & Whiteson, 2013), such optimal solutions can only be obtained for rela-
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tively smaller problems. In terms of computational complexity, optimally solving a finite-
horizon Dec-POMDP is NEXP-Complete (Bernstein et al., 2002). In contrast, finite-horizon
POMDPs are PSPACE-complete (Mundhenk, Goldsmith, Lusena, & Allender, 2000), a
strictly lower complexity class that highlights the difficulty of solving Dec-POMDPs.

1.1 Related Work

For the finite-horizon case, a substantial number of promising point-based approximate
algorithms have been developed (Kumar & Zilberstein, 2010b; Wu, Zilberstein, & Chen,
2010; Dibangoye, Mouaddib, & Chaib-draa, 2009; Kumar & Zilberstein, 2009a; Seuken &
Zilberstein, 2007). However, unlike their point-based counterparts for POMDPs (Pineau,
Gordon, & Thrun, 2006; Smith & Simmons, 2004), they cannot be easily adopted for the
infinite-horizon case due to a variety of reasons. For example, POMDP algorithms represent
the policy as compact α-vectors, whereas most Dec-POMDP algorithms explicitly store the
policy as a mapping from observation sequences to actions, making them unsuitable for
the infinite-horizon case. This has motivated the development of alternative approaches,
approximating factored finite-horizon Dec-POMDPs by a series of collaborative graphical
Bayesian games (Oliehoek, Whiteson, & Spaan, 2013) or using genetic algorithms (Eker &
Akin, 2013).

Recently, a number of approaches have been developed that transform a Dec-POMDP
into a continuous-state MDP and then use techniques from the POMDP literature to solve
the continuous-state MDP (Dibangoye, Amato, Doniec, & Charpillet, 2013a; Dibangoye,
Amato, Buffet, & Charpillet, 2013b). The state in such a continuous MDP reformulation of a
Dec-POMDP, also called occupancy state, is the probability distribution over the world state
and the history of observations each agent has received. Despite the adoption of efficient
POMDP techniques to such a reformulation, a drawback of the approach is that the size of
observation histories increases exponentially with respect to the plan horizon. In contrast,
our approach uses the notion of finite-state controllers (FSCs) that summarize relevant
features of the planning problem. Often, compact FSCs can provide a good approximation
for large planning problems. The occupancy state based formulation has also been applied
to infinite-horizon problems by converting an infinite-horizon problem to an approximate
finite-horizon version. This is done by using the future reward discount factor to derive
some finite-horizon H after which the remaining rewards have a negligible contribution
to the overall value function (Dibangoye, Buffet, & Charpillet, 2014). A drawback of the
truncated horizon approach is that, for high discount factors, the required horizon H can
be prohibitively large.

In terms of solution representation, most algorithms for infinite-horizon problems repre-
sent agent policies as finite-state controllers (Amato, Bernstein, & Zilberstein, 2010; Bern-
stein, Amato, Hansen, & Zilberstein, 2009), unlike algorithms for finite-horizon problems
that often use policy trees (Hansen, Bernstein, & Zilberstein, 2004). The resulting solution
is approximate because of the limited memory of the controllers and because optimizing
the action selection and transition parameters is extremely hard. Previous approaches to
optimize finite-state controller based policies include decentralized bounded policy itera-
tion (DEC-BPI) (Bernstein et al., 2009) and a technique based on non-linear programming
(NLP) (Amato et al., 2010). The DEC-BPI algorithm uses a linear programming formula-
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tion to improve the parameters of one node of one finite-state controller at a time. That
is, it fixes the parameters of all the nodes of all the controllers, except a single node of a
particular agent. Then it uses a linear program to find better action selection and transition
parameters for that particular node. This LP guarantees that the policy value is increased
for every belief state. A major drawback of this scheme is that it is not designed to opti-
mize the value of a particular belief state. Therefore, to produce a good policy, DEC-BPI
may need a large number of controller nodes, which reduces the effectiveness of the LP
formulation.

In contrast to the DEC-BPI approach, the NLP formulation of Amato et al. (2010) can
optimize the controllers for a given initial belief state. This formulation has a linear objective
function. However, the Bellman constraints, which involve additional variables representing
the value of each node, are nonlinear and non-convex in all the variables. This can cause the
NLP solver to get stuck in a local optimum. Furthermore, empirically we observed that the
performance of the state-of-the-art NLP solvers such as SNOPT (Gill, Murray, & Saunders,
2002) degrades quickly even with a moderate increase in the number of nonlinear constraints.
This highlights the challenges presented by scaling the NLP approach for larger (�2 agents)
problems. A complementary research direction has been to investigate the kind of structure
in a controller that can enable better quality solutions. For example, layered controllers
can be developed for POMDPs and Dec-POMDPs, that are then optimized by point based
approaches (Pajarinen & Peltonen, 2011b). The EM based planning algorithms we develop
in our work can also take advantage of such controller structures. There are other approaches
to compute policies for infinite-horizon Dec-POMDPs that are not based on a controller
representation of the joint-policy (MacDermed & Isbell, 2013). However, a key advantage
of policies based on finite-state controllers is their ease of execution in resource constrained
environments (Grzes, Poupart, & Hoey, 2013; Grześ, Poupart, Yang, & Hoey, 2015), without
any expensive belief update operations required in other approaches. Furthermore, policies
represented as finite-state controllers can carry more semantic information, where each
controller node summarizes some relevant aspects of the observation history.

Generalizing Dec-POMDP algorithms to more than two agents has been a persistent
challenge from both problem representation and algorithmic viewpoints. Many recent at-
tempts to increase the scalability of planners with respect to the number of agents impose
restrictions on the form of interaction among the agents. Examples of such restrictions in-
clude transition independence (Becker et al., 2004; Nair et al., 2005), weak-coupling among
agents that is limited to certain states (Varakantham, Kwak, Taylor, Marecki, Scerri, &
Tambe, 2009), and directional transition dependence (Witwicki & Durfee, 2010). One of
the earliest models that demonstrated scalability by limiting interactions among agents was
transition-independent Dec-MDP (TI-Dec-MDP) (Becker, Zilberstein, Lesser, & Goldman,
2003). Agents in these models can fully affect and observe their local state, but they cannot
affect the local states or observations of other agents. The dependence among agents is lim-
ited to the joint reward function. This restricted model has been shown to be NP-Complete
by Goldman and Zilberstein (2004), who also conducted a detailed complexity analysis of
different subclasses of Dec-POMDPs with various limitations on agent interactions. An ex-
tension of TI-Dec-MDP was proposed by Becker, Zilberstein, and Lesser (2004), introducing
structured transition dependencies.
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The TI-Dec-MDP model was extended to handle partial observability in a problem
instance by Nair et al. (2005), resulting in a model called network-distributed POMDP
(ND-POMDP). It was shown that the value function of ND-POMDPs factorizes among
smaller sub-groups of agents based on immediate reward decomposability. This property
was used to develop a number of algorithms that scale relatively well with respect to the
number of agents (Nair et al., 2005; Varakantham, Marecki, Yabu, Tambe, & Yokoo, 2007;
Marecki, Gupta, Varakantham, Tambe, & Yokoo, 2008). Another restricted class of models
is the transition-decoupled POMDP (TD-POMDP) (Witwicki & Durfee, 2010). This model
explicitly differentiates between an agent’s private state that can only be affected by the
agent’s local action and shared states that can be affected by other agents. Structured
interactions have also been used for deciding how to communicate among agents (Mostafa
& Lesser, 2009, 2011). Within the framework of multiagent MDPs (MMDPs), the submod-
ularity property of the value function for a class of sensor network planning problems has
been exploited by Kumar and Zilberstein (2009b).

By and large, the above models try to identify restrictions on agent interactions that
facilitate scalable planning. With the exception of the work of Witwicki and Durfee (2011),
there has not been much work towards a general characterization of conditions under which
multiagent planning can be made scalable. Witwicki and Durfee provide a characterization
of weak-coupling among agents similar to our work. However, a significant difference is
that we propose a concrete algorithm that can efficiently exploit such weak-coupling among
agents to enable scalability to large multiagent systems. The algorithmic outline presented
by Witwicki and Durfee to exploit weak interactions among agents by mapping the policy
optimization problem to constraint optimization is not scalable as it involves enumerating
the policy space of agents.

This article extends two conference papers published at UAI’10 (Kumar & Zilberstein,
2010a) and IJCAI’11 (Kumar, Zilberstein, & Toussaint, 2011) with more detailed back-
ground, new theorems and proofs, simplified EM derivations, and detailed derivation of the
EM updates for the ND-POMDP model. The EM based policy optimization approach that
we developed is the foundation of several other efforts that explore different aspects of mul-
tiagent planning. For example, Wu, Zilberstein, and Jennings (2013) developed sampling-
based E-step inference techniques. This technique is particularly useful in the model-free
setting in which the underlying model is not known. Pajarinen and Peltonen (2011a) ex-
tend our EM approach to factored Dec-POMDPs. They present an approximation of the
E-step using a factored representation of the forward and backward messages as defined in
Section 4.4. Their approach increases the scalability of the EM algorithm w.r.t. the num-
ber of agents and other problem parameters at the expense of making the EM algorithm
approximate. That is, the E and M steps are approximate and may lead to non-monotonic
improvement in the policy value. Pajarinen and Peltonen (2013) further extend the EM
approach to average reward Dec-POMDPs.

The techniques we present in this article differ from such previous approaches in that
rather than approximating the computationally challenging inference for larger multiagent
systems, we explore some natural ways to decompose the inference process and produce an
exact, yet scalable EM algorithm. We further show that the necessary conditions for such
value factorization based decomposition are satisfied in several existing planning models,
confirming the generality of the developed framework.

226



Probabilistic Inference for Multiagent Decision Making

1.2 Summary of Contributions

We present a promising new class of algorithms that combines planning with probabilis-
tic inference and opens the door to the application of rich inference techniques to solving
infinite-horizon Dec-POMDPs. Our approach is based on Toussaint et. al.’s approach of
transforming a single-agent planning problem into its equivalent mixture of dynamic Bayes
nets (DBNs) and using likelihood maximization in this framework to optimize the policy
value (Toussaint & Storkey, 2006; Toussaint, Harmeling, & Storkey, 2006). Such approaches
have been successful in solving MDPs and POMDPs (Toussaint et al., 2006) and they eas-
ily extend to factored or hierarchical structures (Toussaint, Charlin, & Poupart, 2008).
Furthermore, they can handle continuous action and state spaces thanks to advanced prob-
abilistic inference techniques (Hoffman, Kueck, de Freitas, & Doucet, 2009b). We show
how Dec-POMDPs, which are much harder to solve than MDPs or POMDPs, can also be
reformulated as a mixture of DBNs. We then present an Expectation Maximization (EM)
algorithm (Dempster, Laird, & Rubin, 1977) to maximize the reward likelihood and the
policy value in this framework. This approach offers an attractive anytime algorithm be-
cause EM improves the likelihood—and hence the policy value—with each iteration. Our
experiments on benchmark domains show that EM compares favorably against previous
approaches to optimize FSCs, DEC-BPI and NLP-based optimization.

To address scalability with respect to the number of agents, we identify conditions
based on value function factorization that are sufficient to make planning amenable to a
scalable approximation. This is achieved by constructing a graphical model that exploits the
locality of interactions among the agents. We show how to efficiently extend the likelihood
maximization paradigm to this generalized graphical model. Furthermore, we show that
the necessary inference can be decomposed into processes that involve a small subset of
agents—according to the interaction graph—thereby facilitating scalability. We derive a
global update rule that combines these local inferences to monotonically increase the overall
solution quality. Several existing multiagent planning models are shown to satisfy these
conditions, thereby validating the generality of the value factorization property. A further
benefit of our approach is that it is amenable to a massively parallel implementation, since
it relies on local computations and message-passing among neighboring agents.

Experiments on a large multiagent planning benchmark, with joint state and joint action
spaces up to 522, 320 respectively, confirm that our approach is scalable with respect to the
number of agents and can provide good quality solutions for planning problems for up to 20
agents, which cannot be handled by the best existing approaches. For smaller multiagent
systems, our approach provides better solution quality and is about an order-of-magnitude
faster than the previous best nonlinear programming approach for optimizing FSCs.

2. Decentralized POMDP Model

The Dec-POMDP model is a natural extension of MDPs and POMDPs. It can be defined
by a tuple 〈I, S, {Ai}, P,R, {Y i}, O, γ〉, where:

• I denotes a finite set of n agents

• S denotes a finite set of states with designated initial state distribution η0
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• Ai denotes a finite set of actions for each agent i

• P denotes state transition probabilities: P (s′|s,~a), the probability of transitioning
from state s to s′ when the joint-action ~a is taken by the agents

• R denotes the reward function: R(s,~a) is the immediate reward for being in state s
and joint-action taken as ~a

• Y i denotes a finite set of observations for each agent i

• O denotes the observation probabilities: O(~y|s′,~a) is the probability of receiving the
joint-observation ~y when the last joint-action taken was ~a that resulted in the envi-
ronment state being s′

• γ denotes the reward discounting factor

An agent i’s policy, θi : Ȳ i → Ai, maps the set of all possible observation histories Ȳ i

to actions. Solving a Dec-POMDP entails finding the joint-policy θ = 〈θ1, . . . ,θn〉 that
maximizes the total expected reward.

E
[ ∞∑
t=0

γtR
(
st,~at;θ

)]
(1)

where θ denotes the joint-policy and subscript t denotes the dependence on time. In a
Dec-POMDP, agents are acting under uncertainty not only about the underlying environ-
ment state but also about each other. Although the joint-observation received by agents
may be correlated, each agent only observes its own component of the joint-observation.
This makes the coordination problem particularly challenging. In Section 2.1, we show a
compact representation of the policy as finite-state controllers, rather than long sequences
of observations.

When there are two agents in a given multiagent system, we adopt a simplified notation
as follows. The action set of agent 1 is denoted by a ∈ A and of agent 2 by b ∈ B.
The state transition probability P (s′|s, a, b) depends upon the actions of both the agents.
Upon taking the joint-action 〈a, b〉 in state s, agents receive the joint-reward R(s, a, b). Y
is the finite set of observations for agent 1 and Z for agent 2. O(yz | s, a, b) denotes the
probability P (y, z|s, a, b) of agent 1 observing y ∈ Y and agent 2 observing z ∈ Z when the
joint-action 〈a, b〉 was taken and resulted in state s. For infinite-horizon Dec-POMDPs, a
reward discounting factor γ < 1 is used.

2.1 Finite State Controllers

In the case of infinite-horizon Dec-POMDPs, agents operate continuously with the immedi-
ate reward R being discounted by a factor γ < 1. Representing agents’ local policies using
an explicit tree structured representation is not feasible in this case. Therefore, agents’
policies are represented as cyclic finite-state controllers (FSC).

We represent each agent’s policy as a bounded, finite state controller (FSC). This ap-
proach has been used successfully for both POMDPs (Poupart & Boutilier, 2003; Amato,
Bernstein, & Zilberstein, 2007) and Dec-POMDPs (Amato et al., 2010). In this case, each
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Figure 1: A two-agent infinite-horizon joint-policy represented using finite-state controllers.
Each node is a memory state. Edges represent the node transition function. Agent
1 has two observations, y1 and y2. Agent 2 also has two observations, z1 and z2.

agent i has a finite internal memory state, qi ∈ Qi, which summarizes the crucial infor-
mation obtained from past observations to support efficient action selection. The size of
the set Qi determines the expressiveness of the FSC based policy. For POMDPs, FSCs are
beneficial due to their compactness and relative ease of policy execution compared to the
full belief over world states. In Dec-POMDPs, belief over world states cannot be maintained
during the execution time due to lack of availability of joint-observations. Therefore, FSCs
are particularly useful as executing FSC-based policies does not require maintaining belief
over world states.

The FSC of the ith agent is parameterized by θi=(πi, λi, νi) as explained below.

• An agent chooses actions depending on its internal state q: P (a|q;π)=πa,q.

• The internal state is updated with each new observation, by the node transition function:
P (q′|q, y;λ)=λq′,q,y.

• Finally, νq0 is the initial node distribution P (q0) for each agent.

Figure 1 shows the structure of such controllers for two agents. Both the action selection
parameter π and the node transition parameter λ could be deterministic or stochastic.
We optimize stochastic controllers in this work because they can generally produce higher
values (Poupart & Boutilier, 2003).

Figure 2 shows the complete DDN representation of a two-agent Dec-POMDP depicting
how the environment and agents’ policies interact with each other. We use the convention
that subscripts denote time and superscripts, if any, identify agents.

2.2 Objective Function

Considering again the two-agent case, we denote the controller nodes for agent 1 by p and
agent 2 by q. The value for starting the controllers in nodes 〈p, q〉 at state s is given by:

V (p, q, s) =
∑
a,b

πa,pπb,q[
R(s, a, b) + γ

∑
s′

P (s′ | s, a, b)
∑
y,z

O(yz | s′, a, b)
∑
p′q′

λp′,p,yλq′,q,zV (p′, q′, s′)
]
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Figure 2: A two-time slice dynamic decision network (DDN) representation of a two-agent
Dec-POMDP. All nodes are random variables. Square nodes represent decisions;
diamond nodes represent the reward; p and q represent the states of policy for
agent 0 and 1 respectively; subscripts denote time.

The goal is to set the parameters 〈π, λ, ν〉 of the agents’ controllers (of some given size)
that maximize the expected discounted reward for the initial belief η0:

V (η0) =
∑
p,q,s

νpνqη0(s)V (p, q, s)

3. Dec-POMDPs as Mixture of DBNs

In this section, we describe how Dec-POMDPs can be reformulated as a mixture of DBNs,
such that maximizing the reward likelihood defined below is equivalent to optimizing the
joint-policy. Our approach is based on the framework proposed by Toussaint et al. (2006)
and Toussaint and Storkey (2006) to solve Markovian planning problems using probabilistic
inference. In this section, we develop the planning-as-inference strategy for two-agent Dec-
POMDPs and later extend it to multiple (�2) agents. The previous approach of Toussaint
et al. (2006) and Toussaint and Storkey (2006) focused on single agent MDPs and POMDPs.
In our work, we develop new mixture models that allow us to extend the planning-as-
inference paradigm to multiple agents, a significant generalization of the single agent case.
First, we briefly describe the intuition behind this reformulation and then we describe in
detail the necessary modifications required for Dec-POMDPs.

A Dec-POMDP can be described using a single DBN where the reward is emitted at
each time step, such as the unrolled DBN corresponding to the one shown in Figure 2.
However, in our approach, it is described by an infinite mixture of a special type of DBNs
where the reward is emitted only at the end. There is one mixture component for each
time period from T = 0 to ∞. Furthermore, to simulate the discounting of rewards, the
probability of T , which acts as mixture weight, is set as P (T = t) = γt(1 − γ). This also
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Figure 3: The time-dependent DBN mixture (right) corresponding to the two-agent Dec-
POMDP (left). The first DBN component in the mixture corresponds to the
reward for time step 1, second DBN corresponds to the reward for time step 2.
The last DBN in the mixture shows the general structure of a T -step DBN.

231



Kumar, Zilberstein, & Toussaint

ensures that the mixing weights are normalized or
∑∞

t=0 P (T = t)=1. We now describe the
structure of each mixture component of a single T -step DBN.

The first DBN in the DBN mixture model shown in Figure 3 describes the DBN for
time T = 0. The key intuition is that for the reward emitted at any time step T , we have
a separate DBN with the general structure as shown in the last T -step DBN shown in
Figure 3. Such a DBN shows how the reward obtained at time step T depends on policy
parameters and the underlying Dec-POMDP model.

The random variable r shown in the DBN mixture of Figure 3 is a binary variable
with its conditional distribution (for any time T ) described using the normalized immediate
reward as:

R̂sab = P (r = 1|sT = s, aT = a, bT = b) = (Rsab −Rmin)/(Rmax −Rmin).

The parameter Rmax is the maximum reward for any state action pair for the given Dec-
POMDP instance and Rmin denotes the minimum reward. This scaling of the reward is
the key to transforming the optimization problem from the realm of planning to likelihood
maximization as stated below. Let θ denote the joint parameters 〈π, λ, ν〉 for each agent’s
controller.

Theorem 1. By choosing the conditional probability of binary rewards r such that R̂sab ∝
Rsab and introducing the discounting time prior P (T )=γT (1−γ), the joint-policy value V θ

relates linearly to the likelihood Lθ of observing the reward variable as 1:

V θ =
(Rmax −Rmin)Lθ

(1− γ)
+
Rmin
1− γ

Proof. We have the value function defined as:

V θ = E
[ ∞∑
t=0

γtR
(
st,~at;θ

)]
(2)

Consider the T -step DBN in the mixture of Figure 3. We define the likelihood for this time
step T DBN as follows:

LθT =P (r=1|T ; θ) (3)

For the full mixture corresponding to a Dec-POMDP, we have:

Lθ =
∑
T

P (T )LθT =(1− γ)
∑
T

γTP (r=1|T ; θ) (4)

We already chose P (r=1|sT =s, aT =a, bT =b)=(Rsab −Rmin)/(Rmax −Rmin). Therefore,
using the construction of the T -step DBN, we have:

P (r=1|T ; θ) =
E
[
R(sT ,~aT )

]
−Rmin

Rmax −Rmin
(5)
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Substituting back the above result in the expression for Lθ, we get:

Lθ = (1− γ)
∑
T

γT
E
[
R(sT ,~aT

]
−Rmin

Rmax −Rmin
(6)

=
(1− γ)V θ −Rmin
Rmax −Rmin

(7)

where we have used linearity of expectation such that∑
T

γTE
[
R(sT ,~aT

]
= E

[∑
T

γTR(sT ,~aT
]

Combining the above result with the definition of the value function in Eq. (2), the theorem
is proved.

Using the above result, we establish the following result.

Lemma 1. Maximizing the likelihood Lθ=P (r=1;θ) in the mixture of DBNs is equivalent
to optimizing the Dec-POMDP policy.

Theorem 1 and Lemma 1 show that the policy optimization problem can be reformulated
as a parameter learning problem in a suitable DBN mixture. This immediately suggests
using machine learning approaches to maximize the likelihood. Furthermore, this refor-
mulation is lossless in the sense that optimizing the likelihood would exactly optimize the
joint-policy value. We note that we never explicitly create the mixture of DBNs. All the
computations on this DBN mixture can be implemented as message-passing over the origi-
nal Dec-POMDP DDN of Figure 2. The only additional computational requirement is that
of scaling the rewards using Rmax and Rmin, which can be done easily in linear time.

We next present the Expectation-Maximization (EM), a well known technique to max-
imize the likelihood.

4. Policy Optimization via Expectation Maximization

This section describes our application of the EM algorithm (Dempster et al., 1977) for
maximizing the reward likelihood in the mixture of DBNs representing a Dec-POMDP.
EM also possesses the desirable anytime characteristic as the likelihood (and the policy
value which is proportional to the likelihood) is guaranteed to increase per iteration until
convergence. We note that EM is not guaranteed to converge to a global optimum. However,
in the experiments we show that EM almost always achieves similar values as the NLP based
solver to optimize FSCs (Amato et al., 2010) and much better than DEC-BPI (Bernstein
et al., 2009). Key potential advantages of using EM lie in its ability to easily generalize to
much richer representations than currently possible for Dec-POMDPs such as hierarchical
controllers (Toussaint et al., 2008), and continuous state and action spaces (Hoffman et al.,
2009b). Another important advantage is the ability to generalize the solver to larger multi-
agent systems with more than 2 agents by exploiting the relative independence among
agents, as we will show in later sections.
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l(θ; x)

θ2θ1 Parameter space

Q(θ1, θ)

Q(θ2, θ)

Figure 4: The coordinate ascent strategy of the EM algorithm

4.1 Overview of the EM Algorithm

We first provide a high level overview of the EM algorithm followed by detailing its adapta-
tion to planning in Dec-POMDPs. The EM algorithm is a general approach to the problem
of maximum likelihood (ML) parameter estimation in models with latent variables. In the
given latent variable model, let X denote the observable variables and Z denote the hidden
variables. Let θ denote the model parameters. The ML problem is to solve the following
optimization problem:

max
θ
l(θ;x) = max

θ
log
∑
z

p(x, z; θ) (8)

It is hard to optimize the above problem as the summation is inside the log. Furthermore,
maximizing the log-likelihood l(θ;x) is generally a non-convex optimization problem as
shown in Figure 4. Therefore, the EM algorithm iteratively performs coordinate ascent in
the parameter space. First, the EM algorithm computes a lower bound for the function
l(θ;x) such that this lower bound touches l(θ;x), say at point θ1. This lower bound is
denoted as Q(θ1, θ), and is defined as:

Q(θ1, θ) =
∑
z

p(z|x; θ1) log p(x, z; θ)−
∑
z

p(z|x; θ1) log p(z|x; θ1) (9)

The last term in the above expression is the entropy of the variable Z|x. Figure 4 shows the
lower bound Q(θ1, θ) by a blue curve. The function Q(θ1, θ) is also called expected complete
log-likelihood. Importantly, the lower bound Q is concave in parameters θ and thus, can be
optimized globally to provide a better parameter estimate θ2. This process is also shown
in Figure 4. Such coordinate ascent continues iteratively by defining a new lower bound
Q(θ2, θ) at the point θ2 as also shown in Figure 4, and then optimizing it to yield the next
better parameter estimate until convergence.

To connect such an iterative maximization strategy with planning in Dec-POMDPs, we
note that the likelihood function is directly proportional to the joint-policy value for policy
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parameters θ (see Theorem 1). Therefore, for adapting the EM approach to Dec-POMDPs,
we need to perform the following steps:

1. (E-step) Formulate the expected complete log-likelihood Q(θi, θ) for the DBN mixture
model in Figure 3 for iteration i

2. (M-step) Maximize Q(θi, θ) w.r.t. θ to yield a better policy parameters θi+1

3. Repeat steps 1 and 2 until convergence, i.e., until θi ≈ θi+1

We next explain how steps 1 and 2 can be implemented specifically for Dec-POMDPs.

4.2 Step 1: Formulating the Expected Log-Likelihood Q(θ, θ?)

In the DBN mixture of Figure 3, every variable is hidden and the only observed data
is the binary reward variable r = 1. For a particular DBN for time step T , such as
the last DBN in the mixture of Figure 3, let L̃ = (P,Q,A,B,S,Y,Z) denote the latent
variables for a T-step DBN, where each variable denotes a sequence of length T . That is,
P = p0:T , denotes the T -step long sequence of controller state pt of agent 1. EM maximizes
the following expected complete log-likelihood for the Dec-POMDP DBN mixture. Let θ
denote the previous iteration’s parameters and θ? denotes new parameters. The expected
log-likelihood (ignoring the entropy term independent of θ?) is given as:

Q(θ,θ?) =
∞∑
T=0

∑
L̃

P (r=1, L̃, T ;θ) logP (r=1, L̃, T ;θ?) (10)

In the rest of the section, all the derivations refer to the general T -step DBN structure as
shown in Figure 3. We also adopt the convention that for any random variable v, v′ refers
to the next time slice and v̄ refers to the previous time slice. For any group of variables v,
Pt(v,v

′) refers to P (vt = v,vt+1 = v′). The joint probability of all the variables is:

P (r = 1, L̃, T ; θ) = P (T )
[
R̂sab

]
t=T

T∏
t=1

[
πapπbqPss̄āb̄Oyzsāb̄λpp̄yλqq̄z

]
t

·
[
πapπbqνpνqη0(s)

]
t=0

(11)

where brackets indicate the time slices, i.e.,
[
R̂sab

]
t=T

= R̂(sT , aT , bT ). We also used the
shorthand Pss̄āb̄ = P (s|s̄, ā, b̄); similarly for Oyzsāb̄. Taking the log, we get:

logP (r = 1, L̃, T ) = . . .+
T∑
t=0

log πatpt +
T∑
t=0

log πbtqt

+
T∑
t=1

log λptpt−1yt +
T∑
t=1

log λqtqt−1zt + log νp0 + log νq0 (12)

where the missing terms represent the quantities independent of θ, and they do not affect
the maximization of θ. As all the policy parameters 〈π, λ, ν〉 get separated out for each
agent in the log above, the expression for expected log-likelihood can also be formulated
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separately for action parameters, controller node transition parameters and initial node
distribution. For action parameters of an agent, we have the simplified expression as:

Qa,p(θ,θ?) =
∞∑
T=0

P (T )
T∑
t=0

∑
a,p

P (r=1, at=a, pt=p|T ; θ) log π?ap (13)

The above expression was derived by substituting
∑T

t=0 log πatpt for logP (r = 1, L̃, T ;θ?)
in Eq. (10) and marginalizing out the remaining variables (See derivation in Appendix A).
Analogous expected log-likelihood expressions can be written for node transition λ and
initial node distribution ν parameters.

4.3 Step 2: Maximizing the Expected Log-Likelihood Q(θ, θ?)

As highlighted in section 4.1, once we have formulated the expected log-likelihood, the next
step is to maximize it to get a better policy θ?. We show such a maximization first for
action updates. The expected log-likelihood for action updates is given as:

Qa,p(θ,θ?) =
∞∑
T=0

P (T )
T∑
t=0

∑
a,p

P (r=1, at=a, pt=p|T ; θ) log π?ap (14)

The maximization step (M-step) involves solving the following convex optimization problem:

max
{π?

ap}
Qa,p(θ,θ?) (15)

subject to:
∑
a

π?ap = 1 ∀p (16)

The above optimization problem can be easily solved analytically by solving for the Karush-
Kuhn-Tucker (KKT) conditions (Boyd & Vandenberghe, 2004). The resulting update for
the controller action parameters is given as:

π?ap =

∑∞
T=0 P (T )

∑T
t=0 P (r=1, at=a, pt=p|T ; θ)

Cp
(17)

=
Eθ[r = 1, a, p]

Cp
(18)

where Cp is a normalization constant.

All parameter updates: Analogous to the action updates above, we can write the con-
troller transition λ as well as initial node distribution updates ν as follows:

π?ap =
Eθ[r = 1, a, p]

Cp

λ?pp̄y =
Eθ[r = 1, p, p̄, y]

Cp̄y

ν?p =
Eθ[r = 1, p]

C

(19)
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where we have:

Eθ[r = 1, p, p̄, y] =
∞∑
T=1

P (T )
T∑
t=1

P (r=1, pt=p, pt−1 = p̄, yt=y|T ; θ) (20)

Eθ[r = 1, p] =

∞∑
T=0

P (T )P (r=1, p0 =p|T ; θ) (21)

Sections 4.2 and 4.3 summarize the two main steps that form the core of the EM algo-
rithm. These two steps are applied iteratively until convergence and result in monotonic
improvement of solution quality.

4.4 Inference for Parameter Updates

We now detail the inference procedure that computes different expectations Eθ required for
parameter updates shown in Eq. (19). Computing such expectations also forms the E-step of
the EM algorithm. In this step, for the fixed parameter θ, forward messages α and backward
messages β are propagated. Such forward-backward message passing is very similar to the
message passing in the Baum-Welch algorithm for parameter estimation in hidden Markov
models (Koller & Friedman, 2009). First, we define the following Markovian transitions on
the (p, q, s) state in a T -step DBN of Figure 3. These transitions are independent of the
time t due to the stationary joint-policy.

P (p′, q′, s′|p, q, s) =
∑
aby′z′

λp′py′λq′qz′Oy′z′abs′πapπbqPs′sab (22)

Definition 1. The forward message αt is defined to be the probability that the FSC of agent
1 is in state p, FSC of agent 2 is in state q and the world is in state s at time t

αt(p, q, s) = P (pt = p, qt = q, st = s; θ).

It might appear that we need to propagate α messages for each DBN in the DBN mixture
separately, but as pointed out by Toussaint et al. (2006), only one sweep is required as the
head of the DBN is shared among all the mixture components. That is, α2 is the same for
all the T-step DBNs with T ≥ 2. We will omit using θ as long as it is unambiguous.

α0(p, q, s) = νpνqη0(s) (23)

αt(p
′, q′, s′) =

∑
p,q,s

P (p′, q′, s′|p, q, s)αt−1(p, q, s) (24)

The β messages are propagated backwards and are defined as Pt(r = 1|p, q, s; θ). However,
this particular definition would require separate inference for each DBN as for T and T ′

step DBN, βt will be different due to difference in the time-to-go (T − t and T ′ − t). To
circumvent this problem, β messages are indexed backward in time and defined as follows.

Definition 2. The backward message βτ is defined to be the probability of variable r = 1
given that the FSC of agent 1 is in state p, FSC of agent 2 is in state q and the world is in
state s and there are τ steps-to-go in a T -step DBN:

βτ (p, q, s) = P(r = 1|pT−τ = p, qT−τ = q, sT−τ = s)
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where τ = 0 denotes the last time slice t = T . As the tails of all the DBNs in the mixture
of Figure 3 is exactly the same, such backward indexing avoids performing separate inference
in each DBN. For example, β3 is same for all the DBNs with length T ≥ 3 as β3 computes
the probability of reward variable being one given the state of the Markov chain is (p, q, s)
when there are 3 more time steps to go. The recursive definition is as follows:

β0(p, q, s) =
∑
ab

R̂sabπapπbq (25)

βτ (p, q, s) =
∑
p′,q′,s′

βτ−1(p′, q′, s′)P (p′, q′, s′|p, q, s) (26)

Based on the α and β messages we compute two more quantities:

α̂(p, q, s) =
∞∑
t=0

P (T = t)αt(p, q, s) (27)

β̂(p, q, s) =

∞∑
τ=0

P (T = τ)βτ (p, q, s) (28)

These quantities are used in the M-step. The cut-off time for message propagation can either
be fixed a priori or be more flexible based on the likelihood accumulation. If α messages
are propagated for t-steps and β-messages for τ steps, then the likelihood for T = t + τ is
given as:

Lθt+τ = P (r=1|T = t+ τ ; θ) =
∑
p,q,s

P (r=1, pt=p, qt=q, st=s|T = t+ τ) (29)

=
∑
p,q,s

P (r=1|pt=p, qt=q, st=s, T = t+ τ)P (pt=p, qt=q, st=s|T = t+ τ) (30)

=
∑
p,q,s

αt(p, q, s)βτ (p, q, s) (31)

If both α and β messages are propagated for k steps and Lθ2k �
∑2k−1

T=0 γ
TLθT , then the

message propagation can be stopped. This criterion simply means that when the expected
value (or likelihood) for time step T = 2k is too small when compared to the already
accumulated value until time step 2k − 1, then the message propagation can be stopped.
Once we have computed such α and β messages, we can compute the expectations required
for different updates in Section 4.3. The derivations of such updates are provided in the
Appendix A.

Definition 3. Based on computing quantities α̂ and β̂ in Eq. (27)- (28), the parameters of
an agent’s controller are updated after each EM’s iteration as follows:

π?
ap =

πap
Cp

∑
qs

α̂(p, q, s)

[∑
b

R̂sabπbq +
γ

1− γ
∑

p′q′s′y′z′

β̂(p′, q′, s′)λp′py′λq′qz′

∑
b

Oy′z′s′abπbqPs′sab

]
λ?pp̄y =

λpp̄y
Cp̄y

∑
sqs̄q̄z

α̂(p̄, q̄, s̄)β̂(p, q, s)λqq̄z
∑
ab

OyzsabPss̄abπap̄πbq̄

ν?p =
νp
C

∑
qs

β̂(p, q, s)νqPsη0(s)
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4.5 Complexity

Calculating the Markov transitions on the (p, q, s) chain in Section 4.4 has the complexity
O(|Q|4|S|2|A|2|Y |2), where |Q| is the maximum number of nodes for a controller. The
message propagation has complexity O(Tmax|Q|4|S|2). Techniques to effectively reduce this
complexity without sacrificing accuracy will be discussed in the experiments section.

The complexity of updating all action parameters is O(|Q|4|S|2|A||Y |2). Updating node
transitions requires O(|Q|4|S|2|Y |2 + |Q|2|S|2|Y |2|A|2). This is relatively high when com-
pared to a single agent POMDP updates requiring O(|Q|2|S|2|A||Y |) mainly due to the
scale of the interactions present in Dec-POMDPs.

In our experimental settings, we observed that having a relatively small sized controller
(|Q| ≤ 5) suffices to yield good quality solutions. The main contributor to the complexity
is the factor S2 as we experimented with large domains having nearly 250 states. The
good news is that the structure of the E and M-step equations provides a way to effectively
reduce this complexity by a significant factor without sacrificing accuracy. For a given state
s, joint-action 〈a, b〉 and joint-observation 〈y, z〉, the possible next states can be calculated
as follows: succ(s, a, b, y, z) = {s′|P (s′|s, a, b)O(y, z|s′, a, b) > 0}. For most of the problems,
the size of this set is typically a constant k < 10. Such simple reachability analysis and
other techniques speed up the EM algorithm by more than an order of magnitude for large
problems. The effective complexity reduces to O(|Q|4|S||A||Y |2k) for the action updates
and O(|Q|4|S||Y |2k + |Q|2|S||Y |2|A|2k) for node transitions.

4.6 The Intuition Behind the EM Update Strategy

In this section, we provide some insights about the update strategies of EM. The action
parameter update according to Section 4.3 is given as:

π?ap =
Eθ
[
r = 1, a, p

]
Cp

(32)

where Cp is a normalization constant. To understand Eq. (32) more clearly, consider the
following iterative algorithm for optimizing the controller. First, we fix every controller
node’s parameters for every agent except for the parameters for a single controller node for
a particular agent. Now, we deterministically try every action setting for the particular node
and greedily set the action parameter for the node to be the action that results in maximum
joint value. Clearly, this strategy will monotonically improve the policy value until it reaches
a local optima. Such a strategy has been used in other decision making models such as
influence diagrams and is referred to as Single Policy Update (SPU) algorithm (Lauritzen
& Nilsson, 2001).

The updates of the EM algorithm are essentially a soft version of the above greedy and
deterministic rule. To understand this, let a? denote the action with maximum expectation:

a? = arg max
a∈A

Eθ
[
r = 1, a, p

]
(33)

Now consider applying the update rule of Eq. (32) infinitely many times without recom-
puting the E-step. Clearly in the limit, we will have π?a?p = 1 and the rest of the action
parameters will converge to zero. This is essentially the SPU algorithm.
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The above connection also provides insight as to why the soft-max approach of EM
may be a better strategy than the greedy deterministic update rule. First, the greedy
update rule computes deterministic controllers for both the agents. It has been already
shown that stochastic controllers can achieve better solution quality than deterministic
controllers (Poupart & Boutilier, 2003). EM updates can provide stochastic controllers,
which is an advantage. Second, it has been already known in the graphical models com-
munity that the greedy update rule, also referred to as Hard-Assignment EM (Koller &
Friedman, 2009, ch. 19) and the EM algorithm optimize different objectives. They can in
general lead to different solutions, for example, in situations when stochastic controllers are
preferred to deterministic ones. The hard-assignment EM traverses a combinatorial path
and needs to fix all the parameters except one. The soft-assignment EM, on the other
hand, can simultaneously change the parameters of multiple nodes. Thus, the moves in the
parameter space of the soft-assignment EM are more sophisticated and in general, infeasi-
ble for the hard-assignment EM, which cannot simultaneously change multiple parameters.
Thus, soft-assignment EM can converge to a better policy. Therefore, using the soft-max
based update strategy of the EM algorithm can be more advantageous than the greedy
deterministic rule.

4.7 Discussion

We presented a new approach to solve Dec-POMDPs using inference in a mixture of DBNs.
The main benefit of the EM approach is that it opens up the possibility of using powerful
probabilistic inference techniques to solve decentralized planning problems. Using a graph-
ical DBN structure, EM can easily extend to larger multi-agent systems with more than 2
agents, as will be shown in the following sections. Furthermore, the planning-as-inference
viewpoint can help to generalize to richer representations such as factored or hierarchi-
cal controllers (Toussaint et al., 2008), or continuous state and action spaces (Hoffman,
de Freitas, Doucet, & Peters, 2009a).

Incidentally, there is an increasing interest in applying variational inference techniques
from the machine learning and graphical models literature, such as marginal MAP inference
and belief propagation (Liu & Ihler, 2013, 2012), to planning under uncertainty. Particularly
related to our work is the use of such marginal MAP (MMAP) based inference to single agent
POMDP planning (Kiselev & Poupart, 2014a, 2014b). In such MMAP based planning, a
single dynamic Bayesian network is developed by introducing additional binary variables
similar to the binary reward variable r in our case. Once a single graphical model is
developed for the POMDP model, it is shown that maximizing the likelihood of observing
one such special binary variable is equal to optimizing the joint policy.

The key difference between our approach and that of Kiselev and Poupart is the use
of different graphical models to represent the underlying planning problem. The approach
of Kiselev and Poupart uses two additional binary variables per time step that represent the
reward discounting and the value function, which our approach does not need. Furthermore,
in our approach, the time indexing of backward message propagation does not need to be
fixed a priori as shown in Section 4.4, whereas a fixed horizon of the DBN needs to pre-
specified in Kiselev and Poupart’s (2014b) method. Nonetheless, using MMAP inference
for planning represents another variational inference-based approach that can be applied to
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planning under uncertainty problems. Similar to the development of the EM in our case,
one can also develop an EM algorithm for policy optimization in the single DBN model
of Kiselev and Poupart. It remains to be seen, however, how the approach of Kiselev and
Poupart (2014a, 2014b) gets translated to the multiagent setting w.r.t. to scalability and
solution quality.

5. Achieving Scalability Under Restricted Models

In previous sections, we developed probabilistic inference based approximate algorithms
that can efficiently solve 2-agent Dec-POMDPs. However, scaling even such approximate
algorithms for more than 2-agents is a non-trivial task. In fact, a naive extension leads to
exponential increase in complexity with the number of agents. Therefore, in the following
sections, we present a general characterization of interactions among agents that when
present in a multiagent planning model leads to relatively scalable approximate algorithms.

In this section, we identify conditions that are sufficient to make multiagent planning
amenable to a scalable approximation w.r.t. the number of agents. This is achieved by
constructing a graphical model that exploits such restricted interactions among agents.
We again illustrate a close relationship with machine learning by showing that likelihood
maximization in such a graphical model is equivalent to policy optimization. Using the
Expectation-Maximization framework for likelihood maximization, we show that the neces-
sary inference can be decomposed into processes that often involve a small subset of agents,
thereby facilitating scalability. We derive a global update rule that combines these local
inferences to monotonically increase the overall solution quality. Furthermore, our approach
is easily parallelizable and takes the form of message-passing among agents, ideally suited
for large multiagent systems.

Experiments on a large multiagent planning benchmark, with joint state and action
spaces up to 522, 320 respectively, confirm that our approach is scalable w.r.t. the number
of agents and can provide good quality solutions for planning problems for up to 20 agents,
which cannot be handled by previous best approaches. For smaller multiagent systems, our
approach provides better solution quality and is about an order-of-magnitude faster than
the previous best nonlinear programming approach for optimizing FSCs.

5.1 The Value Factorization Framework

The value factorization framework leads to efficient inference for large multiagent systems
and is general enough to subsume several existing planning models. As before, we represent
each agent’s policy as a bounded, finite state controller (FSC). We assume that the state
space S is factored s.t. S = (S1× ...×SM )—a common assumption in multiagent planning
models such as ND-POMDPs (Nair et al., 2005) and TD-POMDPs (Witwicki & Durfee,
2010). Without making further (conditional independence) assumptions on the problem
structure, a general Dec-POMDP requires exact inference in the full corresponding (finite-
time) DBNs, which would be exponential in the number of state variables and agents. Our
approach relies on a general simplifying property of agent interaction, which we later show
to be consistent with many of the existing multiagent planning models.
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Figure 5: Value factorization property in different models: (a) Plate notation for transition
independent Dec-MDPs; (b) Plate notation for ND-POMDPs; (c) Agent interac-
tion digraph for TD-POMDPs

Definition 4. A value factor f defines a subset Af⊆{1, .., N} of agents and a subset
Sf ⊆{1, ..,M} of state variables.

Definition 5. A multiagent planning problem satisfies value factorization if the joint-
policy value function can be decomposed into a sum over value factors:

V (θ, s) =
∑
f∈F

Vf (θf , sf ) , (34)

where F is a set of value factors, θf ≡ θAf is the collection of parameters of the agents of
factor f , and sf ≡ sSf is the collection of state variables of this factor.

Even when the value factorization property holds, planning in such models is still highly
coupled because factors may overlap. That is, an agent can appear in multiple factors as
can state variables. Therefore, a value factor cannot be optimized independently. But, as we
show later, it leads to an efficient Expectation Maximization algorithm. Such additive value
functions have also been used to solve large factored MDPs (Koller & Parr, 1999). Witwicki
and Durfee (2011) use such factored value functions to analyze the complexity of solving
multiagent planning problems. Our work, in contrast, uses such value factorization prop-
erty in conjunction with graphical models and probabilistic inference to develop a scalable
likelihood maximization based algorithm. We require that each value factor Vf can be eval-
uated using the DBN mixture based approach of Section 3. However, this does not limit
generality, as the DBN-based approach can model arbitrary Markovian planning problems.

Theorem 2. The worst case complexity of optimally solving a multiagent planning problem
satisfying the value factorization property is NEXP-Hard.

The proof of the above theorem is straightforward—any two agent finite-horizon Dec-
POMDP is NEXP-Complete and also satisfies the value factorization property as there is
only a single factor involving two agents. In fact, in previous sections we precisely addressed
this issue using the EM framework (see Section 4). Next, we investigate when this property
holds and when it is computationally advantageous, and establish the following result.
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Theorem 3. The value factorization property holds in Transition-Independent Dec-MDPs
(Becker et al., 2004), Network-Distributed POMDPs (Nair et al., 2005) and Transition-
Decoupled POMDPs (Witwicki & Durfee, 2010).

Proof. The joint value is shown to be factorized based on the immediate-reward factorization
in transition independent Dec-MDPs (Becker et al., 2004) and ND-POMDPs (Nair et al.,
2005). Figure 5 shows the plate notation for our value factor representation for both of
these models. The outer plate shows a factor f and the inner plate depicts the interaction
among agent parameters which include state, action and observation variables. In both these
models, a key assumption that leads to scalability is that only a few agents are involved in
a single reward function. Thus, each value factor is small and leads to efficient inference.

Our approach can also model Transition-Decoupled POMDPs (TD-POMDPs) (Witwicki
& Durfee, 2010). In this case, agents have local parameters (factored local state and re-
wards). However, certain features of the local state can depend on other agents’ actions.
Such features are called nonlocal features for an agent i. This dependency among agents
is described using an agent interaction digraph (Witwicki, 2011, Section 3.5.1.2). There is
a node for each agent i. There is a directed edge from node i to node j if agent i affects
a nonlocal feature of agent j. Let Λ(i) denote all the ancestors of a node i in the agent
interaction digraph for a TD-POMDP. As shown by Witwicki (2011, Thm. 3.33), the joint
value function for a TD-POMDP defined over N agents can be factored as:

V (θ) =
N∑
i=1

Vi
(
θi, 〈θj | j ∈ Λ(i)〉

)
(35)

The state variables involved in each factor Vi are the local states for each agent in {i}∪Λ(i).
Furthermore, each value factor Vi can be evaluated by constructing a DBN mixture involving
only the agents {i}∪Λ(i). Therefore, the TD-POMDP model satisfies the value factorization
property. Consider for example the agent interaction digraph in Figure 5(c). The joint value
factorizes as V (θ)=V1(θ1) + V2(θ2, θ1) + V3(θ3, θ1) + V4(θ4, θ1, θ3).

Furthermore, TD-POMDPs are mainly useful for weakly-coupled planning problems
(Witwicki, 2011). This implies that the number of agents involved in a single value factor
should be small compared to the total number of agents, potentially leading to computa-
tional savings in approaches that can exploit the structure of such smaller value factors.

We note that the value factorization property of Eq. (34) is trivially satisfied when all
the agent and state variables are included in a single factor. Obviously, the computational
advantages of our approach are limited to settings where each factor is sparse, involving
much fewer agents than the entire team. This allows for efficient inference in the respective
DBNs (inference can still be efficient for special cases such as TD-POMDPs that have larger
factors). In the general case, the additive value function may include components depending
on all states and agent parameters. This is analogous to the factored HMMs (Ghahramani
& Jordan, 1995) where, conditioned on the observations, all Markov chains become coupled
and the exact E-step of EM becomes infeasible. While this is beyond the scope of this pa-
per, a promising approach for the general case is using variational methods to approximate
the posterior P (s1:M

1:T | r=1) (minimizing the KL-divergence between the factored represen-
tation and the true posterior) (Ghahramani & Jordan, 1995). Given such an approximate
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posterior, the M-step updates can be used to realize an approximate EM scheme, as also
shown by Pajarinen and Peltonen (2011a).

In the next section, we describe a new DBN mixture model for the value factorization
framework. Before that, we highlight the key result behind the scalability of the EM
algorithm

Theorem 4. In models satisfying the value factorization property, the inferences required
for the E-step of the EM algorithm can be performed independently for each value factor f .
For e.g., for action updates for an agent j, we have

Eθ[r = 1, aj , qj ] =
∑

f∈F (j)

Efθ [r = 1, aj , qj ]

where j denotes a particular agent, F (j) denotes the set of value factors the agent j is

involved in, (aj , qj) denote the action and controller state of agent j, Efθ [·] (to be defined
precisely in Section 5.4.1) denotes inference only in the DBN mixture corresponding to the
valued factor f . A constructive proof of the above result is provided below. This result
highlights the generality and scalability of our approach, which—unlike previous works—
does not require any further independence assumptions.

In the next section, we define a latent variable model, again based on a mixture of
DBNs, such that likelihood maximization (LM) in such a mixture model is equivalent to
joint-policy optimization. Once we have established such a relationship between LM and
policy optimization, we show how to perform different steps of EM in this mixture model
as outlined in section 4.1.

5.2 DBN Mixture for Value Factors

Figure 6 shows a new problem-independent DBN mixture, also called value factor mixture,
which models Eq. (34). It consists of two mixture variables: F and T . F ranges from 1
to |F |, the total number of value factors. Intuitively, F = i denotes the time dependent
DBN mixture for value factor i. A zoomed-in view of this DBN mixture is provided in
Figure 6(b). The mixture variable F has a fixed, uniform distribution (= 1/|F |). The
distribution of the variable T is set as in Theorem 1.

This model relies on the fact that in our representation, each value factor can be repre-
sented and evaluated using a time dependent DBN mixture of Figure 6(b) and the binary
reward variable r, as also shown in the Section 3. This DBN mixture for a particular value
factor f will contain all the variables for agents involved in factor f : actions, controller
nodes and observations, and the state variables Sf . The valuation Vf (θf ) can be calcu-
lated by finding the likelihood Lf (θf ; r=1) = P (r = 1; θf ) of observing the binary reward
variable as r = 1 in the DBN mixture for value factor f . Using Theorem 1, we have the
following result:

Vf (θf ) = kLf (θf ; r=1) + kf (36)

where k and kf are constants, with k being the same for all value factors. This can be easily
ensured by making all the original rewards positive by adding a suitable constant. Next we
state one of our main results. We are also assuming that the policy is being optimized for
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x1r̂ y1
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F = 2F = 1 F = |F |

Figure 6: (a) Value factor mixture; (b) Zoomed-in view of each mixture component (x, y
are generic placeholders for random variables).

an initial belief η0. We will also use a notational convenience that
∑|F |
F=1 is equivalent to∑

f∈F .

Theorem 5. Maximizing the likelihood L(θ; r= 1) of observing r = 1 in the value factor
mixture (Figure 6(a)) is equivalent to optimizing the global policy θ.

Proof. The overall likelihood is given by:

L(θ; r=1) = P (r=1;θ) =
∑
f∈F

1

|F |Lf (θf ; r=1) (37)

The theorem follows by substituting the value of each L(θf ; r=1) in the previous equation
from Eq. (36) and the joint-policy value decomposition assumption of Eq. (34).

5.3 Step 1: Formulating the Expected Log-Likelihood Q(θ, θ?)

We now formulate the expected log-likelihood Q(θ, θ?) for the DBN mixture of Figure 6(a).
Only r=1 is the observed data, the rest of the variables are latent. Note that our derivations
differ markedly by Toussaint and Storkey (2006) as they focus on a single-agent problem or
from the EM approach for 2-agent Dec-POMDPs (see Section 4). Our focus is on scalability
w.r.t. the number of agents and generality.

An assignment to the mixture variables T and F = f denotes a T-step DBN for the
value factor f . For example, assume that the time dependent DBN mixture in Figure 6(b)
is for value factor f . Then F = f and T = 1 denote the 1-step DBN (the second DBN) in
Figure 6(b). Let Zf denote a complete assignment to all the variables from slice 0 to T in
the T-step DBN for factor f . We assume for simplicity that each value factor f involves k
agents. The full joint for the mixture is:

P (r=1, Zf , T,F=f) = P (T )P (F=f)
[
R̂sfaf

]
t=T

k∏
i=1

T∏
t=0

[
πfi(a, q)

]
t

k∏
i=1

T∏
t=1

[
λfi(q, q̄, y)

]
t

k∏
i=1

[νfi(q)]0P (Zf\(Af , Qf )|T,F=f) (38)
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where the index fi denotes the respective parameters for agent i involved in factor f . The
square brackets denote dependence upon time: [πfi(a, q)]t=πfi(at=a, qt= q). We also use
[P (v, v̄)]t to denote P (vt=v, vt−1 = v̄).

Let Zf\(Af , Qf ) denote all the variables in this DBN except the action and controller
nodes of all the agents. Importantly, the structure of this previous equation is model in-
dependent as by the conditional independence of policy parameters (π(a, q) =P (a|q)), the
first part of the equation (the product terms) can always be written this way. By model in-
dependent, we imply that the structure of previous equation remains the same for different
models with value factorization property. Since EM maximizes the expected log-likelihood,
we take the log of the above to get:

logP (r = 1, Zf , T,F = f) =

k∑
i=1

T∑
t=0

[
log πfi(a, q)

]
t
+

k∑
i=1

T∑
t=1

[
log λfi(q, q̄, y)

]
t

+
k∑
i=1

[
log νfi(q)

]
0

+ 〈other terms〉 (39)

where 〈other terms〉 denote terms independent of policy parameters θ. EM maximizes the
following expected log-likelihood:

Q(θ,θ?) =
∑
f∈F

∞∑
T=0

∑
Zf

P (r = 1, Zf , T,F = f ; θf ) logP (r = 1, Zf , T,F = f ; θf
?
) (40)

where θ denotes the previous iteration’s joint-policy and θ? is the current iteration’s policy
to be determined by maximization. The structure of the log term (Eq. (39)) is particularly
advantageous as it allows us to perform maximization for each parameter of each agent
independently. This does not imply complete problem decoupling as all the parameters still
depend on the previous iteration’s parameters for all other agents.

5.4 Step 2: Maximizing the Expected Log-Likelihood Q(θ, θ?)

We first derive the update for action parameters of an agent j. P (F) can be ignored as it
is a constant. The expected log-likelihood for action updates, Qja,q(θ,θ

?), is given by:

Qja,q(θ,θ
?) =

∑
f∈F (j)

∑
T

P (T )
∑
Zf

P (r = 1, Zf |T, f ; θf )

[ T∑
t=0

[
log π?j (a, q)

]
t

]
(41)

=
∑

f∈F (j)

∑
T

P (T )

T∑
t=0

∑
a,q

P (r = 1, at=a, qt=q, |T, f ; θf ) log π?j (a, q) (42)

where F (j) is the set of value factors that involve agent j. The M-step involves solving the
following convex optimization problem:

max
{π?

j (a,q) ∀a,q}
Qja,q(θ,θ

?) (43)

subject to:
∑
a

π?j (a, q) = 1 ∀q (44)
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Figure 7: Message passing on the value factor graph: (a) shows the message direction for
E-step; (b) shows the M-step.

The above optimization problem can be easily solved analytically by solving for the Karush-
Kuhn-Tucker (KKT) conditions resulting in following action parameter updates:

π?j (a, q) =

∑
f∈F (j)

∑∞
T=0 P (T )

∑T
t=0 P (r=1, at=a, qt=q|T, f ; θf )

Cq
(45)

=

∑
f∈F (j) E

f
θ [r=1, a, q]

Cq
(46)

where Cq is the normalization constant.

5.4.1 All Parameter Updates

Analogous to the action updates in the previous section, we can write the controller tran-
sition λ as well as initial node distribution updates ν for the agent j as follows:

π?j (a, q) =

∑
f∈F (j) E

f
θ [r = 1, a, q]

Cq
(47)

λ?j (q, q̄, y) =

∑
f∈F (j) E

f
θ [r = 1, q, q̄, y]

Cq̄y
(48)

ν?j (q) =

∑
f∈F (j) E

f
θ [r = 1, q]

C
(49)

We have omitted the superscript j above to denote the action and controller variable for
agent j to avoid clutter. In the next two equations too, all action, controller variables belong
to agent j.

Efθ [r = 1, q, q̄, y] =

∞∑
T=1

P (T )

T∑
t=1

P (r=1, qt=q, qt−1 = q̄, yt=y|T, f ; θf ) (50)

Efθ [r = 1, q] =
∞∑
T=0

P (T )P (r=1, q0 =q|T, f ; θf ) (51)

5.5 Scalability and Message Passing Implementation

The parameter updates in Section 5.4.1 highlight the high scalability of EM for Dec-
POMDPs. Even though the planning problem is highly coupled with each agent and state
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variables allowed to participate in multiple value factors (see Eq. (34)), updating policy

parameters requires separate local inference, Efθ [r = 1, ·, ·], in each value factor.

The global update rules (Eq. (47)–(49)) combine such local inferences to provide a
monotonic increase in the overall solution quality. Each local inference is model dependent
and can be computed using standard probabilistic techniques. As our problem setting
includes sparse factors, such local inference will be computationally much simpler than
performing it on the complete planning model.

Furthermore, the E and M-steps can be implemented using a parallel, distributed message-
passing on a bipartite value-factor graph G= (U, V,E). The set U contains a node uj for
each agent j. The set V contains a node vf for each factor f ∈ F . An edge e = (uj , vf )
is created if agent j is involved in factor f . Figure 7 shows such a graph with three value
factors in the black squares (the set V ) and 4 agents (the set U).

During the E-step, each factor node vf computes and sends the message µf→j =Efθ [r=
1, ·, ·] to each node uj that is connected to vf . Figure 7(a) shows this step. An agent node
uj upon receiving all the µ messages from each factor node connected to it, updates its
parameters as in Eq. (47)–(49) and sends the updated policy parameters θ? back to each
factor node it is connected to (see Figure 7(b)). This procedure repeats until convergence.
Based on this message-passing interpretation of EM, we can state the following result:

Theorem 6. Each iteration of the EM algorithm has linear complexity in the number of
edges in the value factor graph and exponential complexity with respect to the maximum
number of agents involved in a single value factor.

As stated earlier, when the value factors are sparse, EM algorithm will provide significant
computational savings over an approach that is oblivious to the underlying interaction
among agents. Another significant advantage of the EM algorithm is that all messages
can be computed in parallel by each factor node. Our experiments, using an 8-core CPU
resulted in near linear speedup over a sequential version. These characteristics of the EM
algorithm significantly enhance its scalability for large, but sparse planning problems.

5.5.1 Nature of Local Optima

Variants of the Dec-POMDP model are often solved by fixing the policies of a group of agents
and then finding the best response policy of the agent that interacts with the group (Nair,
Tambe, Yokoo, Pynadath, Marsella, Nair, & Tambe, 2003; Witwicki & Durfee, 2010). EM
offers significant advantages over such strategy. While both find local optima, EM is more
stringent and satisfies the Karush-Kuhn-Tucker conditions (Bertsekas, 1999), which is the
norm in nonlinear optimization. The local optima of the EM refers to the stationary point
of the likelihood function (or the value function) l(θ;x) in Figure 4. The parameter space
θ in this figure includes both the discrete parameters that can be found by local optimal
algorithms such as any best response strategy and the continuous parameters that are found
by algorithms such as EM.

The local optima of any best response strategy simply refers to the fact that the partic-
ular algorithm cannot improve the policy using the best-response strategy. Such algorithm
specific local optima may or not be the stationary point of the value function in Figure 4.
If such a solution is not the stationary point, then EM would be able to improve upon
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this solution given that EM is guaranteed to converge to a stationary point of the value
function. Thus, the local optima provided by EM satisfies the more stringent guarantee of
being a stationary point of the value function. The best-response strategy provides no such
guarantees.

5.6 Discussion

Despite rapid progress in multiagent planning, the scalability of the prevailing formal models
has been limited. We developed a new approach to multiagent planning by identifying
the general property of value factorization that facilitates the development of a scalable
approximate algorithm using probabilistic inference. We show that several existing classes
of Dec-POMDPs satisfy this property. In contrast to previous approaches, our framework
does not impose any further restrictions on agent interaction beyond this property, thus
providing a general solution for value factorization based multiagent planning.

The key result that supports the scalability of our approach is that, within the EM
framework, the inference process can be decomposed into separate components that are
much smaller than the complete model, thus avoiding an exponential complexity in the
number of agents. Additionally, the EM algorithm allows for distributed planning using
message-passing along the edges of the value-factor graph, and is amenable to paralleliza-
tion. Results on large sensor network problems confirm the scalability of our approach.
Empirically, our approach, which has linear complexity in the number of edges in the agent
interaction graph could scale up to 20 agents, whereas the previous best approach based
on nonlinear programming could only scale up to 5 agents due to increase in the number of
nonlinear constraints.

We also highlight the key differences in our approach against the previous approach
of Toussaint et al. (2006, 2008) for single-agent MDPs and POMDPs. Although the idea
of decomposing the planning problem into a time-dependent DBN mixture remains the
same in our approach, the key differences lie in the structure of the DBNs for two agent
Dec-POMDPs and value factored Dec-POMDPs, the derivation of the lower bound function
Q(θ, θ?) and the maximization of this Q function for Dec-POMDPs as required within the
EM framework (see Section 4.1), and computing the required inferences over the underlying
Markov chain of DBNs as shown in Section 4.4.

The interactions between the FSC-based policy and the environment present in the
DBN for MDPs and POMDPs are relatively simple when compared against the interactions
present in a Dec-POMDPs. In Dec-POMDPs, agents not only interact with the environ-
ment, but also with each other. Such inter-agent interactions leads to a much different
DBN structure, and planning challenges in Dec-POMDPs. For example, the DBN mix-
ture for our value factorization model is nested as shown in Figure 6. This is a unique
feature required in our formulation of the DBN approach, and not present in POMDPs.
Due to such differences in the structure of a single DBN as well as the mixture model, our
adaptation of EM requires different formulation of alpha and beta messages to account for
inter-agent influences as shown in Section 4.4. Similarly, the structure of Q(·, ·) function
is different owing to inter-agent influences (see Eq. (40)), and leads to different updates
that provide scalability and inter-agent message-passing structure in multiagent systems as
shown in Sections 5.4.1 and 5.5. Therefore, while adapting the EM approach to multiagent
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Size DEC-BPI NLP EM DEC-BPI EM

1 4.687 9.1 9.05 < 1s < 1s
2 4.068 9.1 9.05 < 1s < 1s
3 8.637 9.1 9.05 2s 1.7s
4 7.857 9.1 9.05 5s 4.62s

Table 1: Broadcast channel: Policy value, execution time

planning, one of our key contributions has been to deliberately investigate and exploit the
independencies that are present in a multiagent system to translate into a scalable algorith-
mic structure. Furthermore, we have also shown general applicability of our approach to
previous multiagent planning models in Theorem 3.

6. Empirical Evaluation

We begin the empirical evaluation with experiments conducted with 2-agent problems. This
is followed by experiments with larger problems involving up to 20 agents.

6.1 Two Agents Dec-POMDPs

We experimented with several standard 2-agent Dec-POMDP benchmarks with discount-
ing factor γ = 0.9. We compare our EM algorithm with the decentralized bounded policy
iteration (DEC-BPI) algorithm (Bernstein et al., 2009) and a non-linear, non-convex opti-
mization solver (NLP) (Amato et al., 2010). The DEC-BPI algorithm iteratively improves
the parameters of a node using a linear program while keeping the other nodes’ param-
eters fixed. The NLP approach, which has been the state-of-the-art for infinite-horizon
Dec-POMDPs, recasts the policy optimization problem as a non-linear program and uses
an off-the-shelf solver, Snopt (Gill et al., 2002), to obtain a solution. We implemented the
EM algorithm in JAVA. All our experiments were on a Mac with 4GB RAM and 2.4GHz
CPU. Each data point for every algorithm tested and parameter setting is an average of 10
runs with random initial controller parameters. In terms of solution quality, EM is always
better than DEC-BPI and it achieves similar or higher solution quality than NLP. We note
that the NLP solver (Gill et al., 2002) is an optimized package and therefore for larger
two agent problems is currently faster than the EM approach. For the EM algorithm, we
did not implement optimizations such as parallel execution using multithreading, that can
decrease the runtime significantly.

Table 1 shows results for the broadcast channel problem, which has 4 states, 2 actions per
agent and 5 observations. This is a networking problem where agents must decide whether
or not to send a message on a shared channel and must avoid collision to get a reward. We
tested with different controller sizes shown in the first column. On this problem, all the
algorithms compare reasonably well, with EM being better than DEC-BPI and very close
in value to NLP. The time for NLP is also ≈ 1s.

Figure 8(a) compares the solution quality of the EM approach against DEC-BPI and
NLP for varying controller sizes on the recycling robots problem. In this problem, two robots
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Figure 8: Solution quality and runtime for ‘recycling robots’ (a) & (b) and ‘meeting on a
grid’ (c) & (d)

have the task of picking up cans in an office building. They can search for a small can, a
big can or recharge the battery. The large item is only retrievable by the joint action of the
two robots. Their goal is to coordinate their actions to maximize the joint reward. EM(2)
and NLP(2) show the results with controller size 2 for both agents in Figure 8(a). For this
problem, EM works much better than both DEC-BPI and the NLP approach. EM achieves
a value of ≈ 62 for all controller sizes, providing nearly 12% improvement over DEC-BPI
(= 55) and 20% improvement over NLP (= 51). Figure 8(b) shows the time comparisons
for EM with different controller sizes. Both the NLP and DEC-BPI take nearly 1s to
converge. EM with controller size 2 has comparable performance, but as expected, EM
with 4-node controllers takes longer as the complexity of EM is proportional to O(|P|4),
where |P| denotes the controller size.

Figure 8(c) compares the solution quality of EM on the meeting on a grid problem.
In this problem, agents start diagonally across in a 2 × 2 grid and their goal is to take
actions such that they meet each other (i.e., share the same square) as much as possible.
As the figure shows, EM provides much better solution quality than the NLP approach. EM
achieves a value of ≈7, which nearly doubles the solution quality achieved by NLP (= 3.3).
DEC-BPI results are not plotted as it performs much worse and achieves a solution quality
of 0, essentially unable to improve the policy at all even for large controllers. Both DEC-
BPI and NLP take around 1s to converge. Figure 8(d) shows the time comparison for EM
versions. EM with 2-node controllers is very fast and takes < 1s to converge (50 iterations).

251



Kumar, Zilberstein, & Toussaint

-50

-40

-30

-20

-10

 0

 0  100  200  300  400

Po
lic

y 
Va

lu
e

Iteration

EM(2)
EM(4)

EM(10)
NLP(2)
NLP(5)

NLP(10)

(a) |S| = 2, |A| = 3, |Y | = 2

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0  100  200  300  400

Li
ke

lih
oo

d

Iteration

EM(2)
EM(10)

(b)

Figure 9: Solution quality (a) and likelihood (b) for ‘multiagent tiger’

Again, because of EM’s quartic complexity in the controller size |P|, the time required for
larger controllers is higher. Also note that in both the cases, EM could run with much
larger controller sizes (≈10), but the increase in size did not provide tangible improvement
in solution quality.

Figure 9 shows the results for the multi-agent tiger problem, involving two doors with
a tiger behind one door and a treasure behind the other. Agents should coordinate to
open the door leading to the treasure (Amato et al., 2010). Figure 9(a) shows the quality
comparisons. EM does not perform well in this case; even after increasing the controller
size, it achieves a value of −19. NLP works better with large controller sizes. However, this
experiment presents an interesting insight into the workings of EM as related to the scaling
of the rewards. Recalling the relation between the likelihood and the policy value from
Theorem 1, the equation for this problem is: V θ = 1210Lθ− 1004.5. For EM to achieve the
same solution as the best NLP setting (= −3), the likelihood should be .827. Figure 9(b)
shows that the likelihood EM converges to is .813. Therefore, from EM’s perspective, it
is finding a really good solution. Thus, the scaling of rewards has a significant impact (in
this case, adverse) on the policy value. This is a potential drawback of the EM approach,
which applies to other Markovian planning problems when using the technique of Toussaint
et al. (2006). Incidently, DEC-BPI performs much worse and gets a quality of−77.

Figure 10 shows the results for the two largest Dec-POMDP domains—Box pushing and
Mars rovers. In the box pushing domain, agents need to coordinate and push boxes into a
goal area. In the Mars rovers domain, agents need to coordinate their actions to perform
experiments at multiple sites. Figure 10(a) shows that EM performs much better than DEC-
BPI for every controller size. For controller size 2, EM achieves better quality than NLP
with comparable runtime (Figure 10(b), 500 iterations). However, for the larger controller
size (= 3), it achieves slightly lower quality than NLP. For the largest Mars rovers domain
(Figure 10(c)), EM achieves better solution quality (= 9.9) than NLP (= 8.1). However,
EM also takes many more iterations to converge than for previous problems and hence,
requires more time than NLP. EM is also much better than DEC-BPI, which achieves a
quality of −1.18 and takes even longer to converge (Figure 10(d)). For this Mars rover
domain, the NLP solver was not able to run for larger controller sizes due to the size of the
nonlinear program.
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Figure 10: Solution quality and runtime for ‘box pushing’ (a) & (b) and ‘Mars rovers’
(c) & (d)

To summarise, a simple implementation of the EM approach was competitive with an
industrial strength off-the-shelf nonlinear programming solver. Our algorithm provided
similar or better solution quality than the current best NLP approach. The main benefit
of the EM approach lies in the fact that it opens up the possibility of using powerful
probabilistic inference techniques to solve decentralised planning problems. As we shall see
in the next section, EM scales significantly better than the NLP approach for larger (� 2)
multiagent benchmarks where the NLP approach fails due to the large size of the resulting
nonlinear programs.

6.2 Larger Multiagent Benchmarks

We experimented on a target tracking application in sensor networks modeled as an ND-
POMDP (Nair et al., 2005). Figure 11 shows four sensor topologies: 5P, 11H and 15-3D
by Marecki et al. (2008) and the largest 20D by Kumar and Zilberstein (2009b).

We describe and develop a significantly enriched variant of this application to better
test our approach, originally introduced by Nair et al. (2005). Each node in these graphs
is a sensor agent and edges are locations where targets can move. To track a target and
gain reward (=+80), two sensors must scan the target location simultaneously, otherwise a
penalty (=−1) is given. All targets have independent, stochastic trajectories and their all
possible locations form the external state-space, implying target movement is not affected
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Figure 11: Benchmarks 20D (left), 15-3D, 5P and 11H (right)

by the sensors’ actions. Sensors have an internal state, an indication of the battery level
of the sensor. Each scan action depletes the battery. In addition to scanning, sensors
have two additional actions—sensor off and recharge. The sensor off action allows sensors
to conserve energy by remaining idle. When the battery is completely depleted, a sensor
must perform recharge action, which has a cost (=−1). Each sensor has three observation:
target present, target absent and idle. False positives/negatives are allowed for the first
two observations. At runtime, sensors operate in a decentralized manner without a central
controller.

Note that our formulation of sensor network application is much richer and challenging
than the previously used benchmarks (Marecki et al., 2008). Earlier benchmarks did not
include any internal states and sensors were assumed to have an unbounded battery life. In
the current formulation, planning is much more complex as sensors must reason not only
about scanning, but also about conserving their energy, as they have a limited battery.

The EM algorithm was implemented in JAVA. All our experiments were done on an
8-core iMac with 2GB RAM. Our implementation used multithreading to parallelize EM
as highlighted in Section 5.5 and utilized all 8-cores. Each datapoint is the average of 10
runs. To speed up EM’s convergence, we used a greedy variant of the M-step presented
by Toussaint et al. (2008). Such a step positively affects the rate of convergence of EM
with relatively little affect on the solution quality. Such an M-step is essentially a softer
version of the hard assignment EM (see Eq.(33)) and follows the same design (Toussaint
et al., 2008). We next describe problem sizes for different instances.

The 5P domain has 2 targets, 11H has 3 targets, 15-3D has 5 targets, and 20D has
6 targets. All these problems have very large state-spaces: 6× 55 for 5P, 64× 511 for 11H,
144× 515 for 15-3D and 2700× 520 for 20D. Evidently, EM efficiently exploits the factored
representation of the state and action spaces and is highly scalable with linear complexity
w.r.t. the number of edges in the graph. We also note that even solving the underlying
factored MMDP optimally is not feasible due to large state and action spaces.

Figure 12 shows the solution quality EM achieves for each of these benchmarks with
different controller sizes. A notable observation from these graphs is that EM converges
quickly with the greedy M-step of Toussaint et al. (2008) , taking fewer than 200 itera-
tions even for such large multiagent planning problems. The solution quality, as expected,
increases monotonically with each iteration highlighting the anytime property of EM. In
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Figure 12: Solution quality achieved by EM (y-axis denotes quality and x-axis denotes the
iteration number).

Instance\Size 2-Node 3-Node 4-Node 5-Node

5P .232 1.07 3.22 7.74
11H 1.29 6.07 18.90 45.23

15-3D 1.17 5.39 16.69 40.47
20D 5.03 22.01 67.85 171.26

Table 2: Time in seconds per iteration of EM

general, the solution quality increased with the number of controller nodes. For example,
for 20D, a 2-node controller achieves a quality of 3585.06 and a 5 node controller achieves
4154.04. However, for 5P and 15-3D, we did not observe a significant increase in quality by
increasing controller size, possibly due to the relative simplicity of these configurations.

Table 2 shows the runtime per iteration of EM for different instances and varying con-
troller sizes. Encouragingly, the runtime is fairly small—particularly for smaller controller
sizes—even for large problems such as 20D. To further decrease the runtime for larger
controllers, we plan to use Monte-Carlo sampling techniques in the future.

Table 3 shows the solution quality comparison of EM with random controllers and a loose
upper bound. The upper bound was computed by assuming that each target is detected
at every time step including the battery recharge cost. Against random controllers, EM
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Instance/Value EM U.B. Random

5P 1250.89 (44.3%) 2820 61.23
11H 1509.27 (35.6%) 4230 8.41

15-3D 3094.05 (43.8%) 7050 104.2
20D 4154.04 (49.1%) 8460 −31.67

Table 3: Quality comparisons with a loose upper bound and random controllers for all
instances

Internal State = 2 Internal State = 3

N EM NLP EM NLP

2 670.8/3.8 79/5.4 972.5/8.9 905.7/17.8
3 670.8/13.02 140.4/14.5 1053.16/35.8 887.2/139
4 710.4/35.8 140.4/139.4 1062.4/107.4 1024.8/1078.1

Table 4: Solution quality/time comparison of EM (100 iterations) with NLP for the 5P
domain, N denotes controller size, Time in seconds

always achieves much better solution quality. When compared against the upper bound, we
can see that EM performs quite well. Despite being a very loose bound, EM still achieves
a quality within 49.1% of this bound for the largest 20D domain—a solid performance.

Previously, no algorithm could solve infinite-horizon ND-POMDPs (>2-agents). To
further assess EM’s performance, we developed a nonlinear programming (NLP) formulation
of the problem and used a state-of-the-art NLP solver called Snopt (Gill et al., 2002). Snopt
could only solve the smallest 5P domain and could not scale beyond controller size 4 and
internal state 3 as it ran out of memory (=2GB). Table 4 shows the solution quality and
time comparisons. For internal state size of 2, Snopt gets stuck in a poor local optimum
compared to EM. It provides more competitive solutions for internal state 3, but EM is still
better in solution quality. Furthermore, the runtime of Snopt degrades quickly with the
increase in nonlinear constraints. This makes Snopt about an order-of-magnitude slower
for controller size 4 and internal state 3. These results further highlight the scalability of
EM, which could scale up to controller size 10 and internal state 5 within 2GB RAM and
≈ 4 hours for 100 iterations.

Table 5 shows a comparison of EM against handcrafted controllers designed to take into
account the target trajectories and partial observation in the 11H benchmark (Figure 11).
To simplify the problem for the handcrafted solution, all penalties were zero and the reward
for detecting a target was 1. This allowed continuous scan by sensors without worrying
about miscoordination penalty. The first row in this table shows this no penalty case. We
see that EM is competitive with the handcrafted controller. The second row shows the
results when there was a cost to charge batteries. In this case, sensors need to decide when
to become idle to conserve power. The handcrafted controller cannot learn this behavior
and hence EM produces much better quality in this case.
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Version \ FSC Size Handcrafted 2 (EM) 3 (EM) 4 (EM)

No penalty 13.92 13.95 15.48 15.7

Penalty (−.25) -3.36 5.27 5.27 5.27

Table 5: Quality of handcrafted controllers vs. EM (11H)

Version \ FSC Size 2 3 4 5

Serial 41.05 177.54 543.52 1308.20

Parallel 5.03 22.01 67.85 171.26

Table 6: Serial vs. parallel execution times per EM iteration in 20D.

Finally, Table 6 highlights the significant opportunities that EM provides for parallel
computation. We consistently obtained almost linear speedup when using multithreading
on an 8-core CPU (total possible parallel threads in the largest domain 20D is 60). By
using a massively parallel platform such a Google’s MapReduce,we could easily scale to
much larger team decision problems than currently possible.

7. Conclusion

Despite the rapid progress in multiagent planning, the scalability of the prevailing formal
models and algorithms has been limited. We presented a new approach to multiagent plan-
ning by developing novel connections between multiagent planning and machine learning.
We showed how the multiagent planning problem can be reformulated as inference in a mix-
ture of dynamic Bayesian networks. By viewing multiagent planning through the lens of
probabilistic inference, we open the door to the application of efficient inference techniques
to multiagent decision making.

To further improve scalability to large multiagent systems, we identified a general con-
dition called value factorization that facilitated the development of a scalable approximate
algorithm using probabilistic inference. We showed that several existing classes of Dec-
POMDPs satisfy this property. In contrast to previous approaches, our framework does not
impose any further restrictions on agent interaction beyond this property, thus providing
a general solution for value factorization based structured multiagent planning. The key
result that supports the scalability of our approach is that, within the EM framework, the
inference process can be decomposed into separate components that are much smaller than
the complete model, thus avoiding an exponential complexity.

Empirically, we experimented with several standard and large multiagent planning
benchmarks. Our inference-based approach was competitive with previous best approaches
based on nonlinear and linear programming. Our approach, which has linear complexity in
the number of edges in the agent interaction graph could scale up to 20 agents, whereas the
previous best approach based on nonlinear programming could only scale up to 5 agents
due to increase in the number of nonlinear constraints.

Our theoretical and empirical results show that exploring methods that overlap ma-
chine learning and planning has a great potential to overcome the practical limitations of
existing multiagent planning algorithms. In future work, we plan to explore several such
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directions. We are interested in exploring the overlap of stochastic control theory and mul-
tiagent planning in continuous action and state space models similar to the work of Hoffman
et al. (2009a, 2009b). We also plan to further explore ways to overcome the effect of local
optima on the solution quality achieved by the EM algorithm. We specifically plan to inves-
tigate strategies to escape local optima (Poupart, Lang, & Toussaint, 2011) and to adapt
them to the multiagent setting.

Another key issue with planning-as-inference strategy using the EM algorithm is the
lack of any optimality guarantee or upper bounds on the controller based joint-policy. An
interesting recent research direction in the graphical models and machine learning literature
is the development of multiple inference strategies for marginal MAP (Liu & Ihler, 2013). It
has been shown that the EM algorithm can be used as one such inference approach to solve
the marginal MAP problem (Liu & Ihler, 2013). Planning under uncertainty problems can
be categorized as an instance of the marginal MAP inference (Cheng, Liu, Chen, & Ihler,
2013). Therefore, developing graphical models that can exploit new inference approaches for
the marginal MAP problem and provide quality guarantees is an interesting new direction
to explore at the frontier of planning and machine learning.
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Appendix A. Proof of EM Update Equations in Definition 3

We provide a constructive proof, showing the derivations of the relevant update equations.

A.1 Proof of Eq. (13)

Q(θ,θ?) =

∞∑
T=0

∑
L̃

P (r=1, L̃, T ;θ)
[ T∑
t=0

log π?atpt
]

(52)

=
∞∑
T=0

P (T )
T∑
t=0

∑
L̃

P (r=1, L̃|T ;θ) log π?atpt (53)

In the above equation, the variable L̃ includes all the hidden variables in the DBN of length
T . We can simplify the above summation using marginalization over variables other than
{at, pt}. We also use the fact that the policy is stationary to simplify as:

=

∞∑
T=0

P (T )

T∑
t=0

∑
a,p

log π?ap
∑

L̃\{at,pt}
P (r=1, at = a, pt = p, L̃\{at, pt}|T ;θ) (54)

=

∞∑
T=0

P (T )

T∑
t=0

∑
a,p

log π?apP (r=1, at = a, pt = p|T ;θ) (55)
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A.2 Action Parameter Updates

The expectation required for action updates as given in Section 4.3 is given as:

Eθ[r = 1, a, p] =

∞∑
T=0

P (T )

T∑
t=0

[
P (r=1, a, p|T ; θ)

]
t

(56)

By breaking the above summation between t = T and t = 0 to T − 1, we get

Eθ[r = 1, a, p] =
∞∑
T=0

P (T )
∑
qbs

R̂sabπapπbqαT (p, q, s)+
∞∑
T=0

P (T )

T−1∑
t=0

∑
p′q′s′

βT−t−1(p′, q′, s′)Pt(a, p, p′, q′, s′) (57)

In the above equation, we marginalized the last time slice over the variables (q, b, s). For
the intermediate time slice t, we condition upon the variables (p′, q′, s′) in the next time
slice t + 1. We now use the definition of α̂ and move the summation over time T inside
for the last time slice and further marginalize over the remaining variables (q, s) in the
intermediate slice t:

Eθ[r = 1, a, p] =
∑
q,b,s

R̂sabπapπbqα̂(p, q, s) +

∞∑
T=0

P (T )

T−1∑
t=0

∑
p′q′s′sq

βT−t−1(p′, q′, s′)πapP (p′, q′, s′|a, p, q, s)αt(p, q, s) (58)

Upon further marginalizing over the joint observations y′z′ and simplifying we get:

Eθ[r = 1, a, p] = πap
∑
qs

[∑
b

R̂sabπbqα̂(p, q, s) +
∑

p′q′s′y′z′

∞∑
T=0

P (T )

T−1∑
t=0

βT−t−1(p′, q′, s′)

P (s′|a, q, s)λp′py′λq′qz′P (y′z′|a, q, s′)αt(p, q, s)
]

(59)

We resolve the above time summation, as Toussaint et al. (2006), based on the fact that:

∞∑
T=0

T−1∑
t=0

f(T − t− 1)g(t) =
∞∑
t=0

∞∑
T=t+1

f(T − t− 1)g(t)

and then setting τ = T − t− 1 to get
∑∞

t=0 g(t)
∑∞

τ=0 f(τ).
Finally we get:

Eθ[r = 1, a, p] = πap
∑
qs

α̂(p, q, s)

[∑
b

R̂sabπbq +
γ

1− γ∑
p′q′s′y′z′

β̂(p′, q′, s′)λp′py′λq′qz′P (s′|a, q, s)P (y′z′|a, q, s′)
]

(60)
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The product P (s′|a, q, s)P (y′z′|a, q, s′) can be further simplified by marginalizing out over
actions b of agent 2 as follows:

Eθ[r = 1, a, p] = πap
∑
qs

α̂(p, q, s)

[∑
b

R̂sabπbq +
γ

1− γ∑
p′q′s′y′z′

β̂(p′, q′, s′)λp′py′λq′qz′
∑
b

Oy′z′s′abπbqPs′sab

]

The expectation Eθ[r = 1, b, q] for the other agent can be found similarly by the analogue
of the above equation.

A.3 Controller Node Transition Parameter Updates

The expectation required for the controller node transition parameters is as follows:

Eθ[r=1, p, p̄, y] =
∞∑
T=1

P (T )
T∑
t=1

P (r=1, pt=p, pt−1 = p̄, yt=y|T ; θ) (61)

By marginalizing over the variables (q, s) for the current time slice t, we get

Eθ[r=1, p, p̄, y]=

∞∑
T=1

P (T )

T∑
t=1

∑
sq

βT−t(p, q, s)Pt(p, p̄, y, s, q|T ; θ) (62)

By further marginalizing over the variables (s̄, q̄) for the previous time slice of t and over
the observations z of the other agent, we get

Eθ[r=1, p, p̄, y]=λpp̄y

∞∑
T=1

P (T )
T∑
t=1

∑
sqs̄q̄z

βT−t(p, q, s)λqq̄z

P (yz|p̄, q̄, s)P (s|p̄, q̄, s̄)αt−1(p̄, q̄, s̄) (63)

The above equation can be further simplified by marginalizing the product
P (yz|p̄, q̄, s)P (s|p̄, q̄, s̄) over actions a and b of both the agents as follows:

Eθ[r=1, p, p̄, y]=λpp̄y

∞∑
T=1

P (T )

T∑
t=1

∑
sqs̄q̄z

βT−t(p, q, s)λqq̄zαt−1(p̄, q̄, s̄)
∑
ab

OyzsabPss̄abπap̄πbq̄

(64)

Upon resolving the time summation as before, we get the final expression as:

Eθ[r=1, p, p̄, y] = λpp̄y
∑
sqs̄q̄z

α̂(p̄, q̄, s̄)β̂(p, q, s)λqq̄z
∑
ab

OyzsabPss̄abπap̄πbq̄ (65)

The expectation Eθ[r=1, q, q̄, z] for the other agent can be found in an analogous way.
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A.4 Initial Node Distribution Update

The expectation for the initial node distribution update is given as:

Eθ[r = 1, p] =

∞∑
T=0

P (T )P (r=1, p0 =p|T ; θ) (66)

The above expression can be computed as follows:

Eθ[r = 1, p] =

∞∑
T=0

P (T )[P (r = 1, p|T ; θ)]t=0 (67)

=
∞∑
T=0

P (T )
∑
qs

P0(r = 1|p, q, s, T ; θ)P0(p, q, s) (68)

=
∞∑
T=0

P (T )
∑
qs

βT (p, s, q)νpνqη0(s) (69)

= νp
∑
qs

β̂(p, s, q)νqη0(s) (70)

Appendix B. EM Derivation for the ND-POMDP Model

An n-agent ND-POMDP has the following parameters:

S = ×1≤i≤nSi × Su, where Si is the local state of agent i; Su is a set of uncontrollable
or external states that are independent of the agents’ actions. In the sensor network
example, Si is the battery level, while Su corresponds to the set of locations where
targets can be present.

A = ×1≤i≤nAi where Ai is the set of actions for agent i. For the sensor network,
Ai ={l1, . . . , lk,Off, Recharge}, where {l1, . . . , lk} represents the edges in the graph which
can be scanned by the given sensor agent.

Y = ×1≤i≤nYi is the joint observation set. For the sensor network case, Yi = {target
present, absent, sensor idle}. We assume that sensor i can observe its internal state Si.
This is a realistic assumption as sensors can normally monitor their own battery level.
The noisy component of the observation set corresponds to target locations.

P P (s′|s,a) = Pu(s′u|su)·∏n
i=1 Pi(s

′
i|si, su, ai) is the transition model, where a=〈a1, . . . , an〉

is the joint action taken in joint state s = 〈su, s1, . . . , sn〉 resulting in joint state s′ =
〈s′u, s′1, . . . , s′n〉. The model relies on conditional (on external state) transition indepen-
dence among the agents.

O O(y|s,a) =
∏n
i=1 Pi(yi|ai, su, si, ), where y is the joint observation after taking joint

action a and transitioning to joint state s. This relies on conditional observation inde-
pendence.

R R(s,a) =
∑

lRl(su, sl, al) is the reward function, which is decomposable along subgroups
of agents defined by a set of links l. If k agents i1, . . . , ik are members of a particular
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q0 q1 q2 q3 qT

1

Figure 13: A T-step DBN for a link involving two agents. There is one such DBN for each
link l and every time step T . In top three layers, p denotes first agent’s (on
link l) controller nodes, a denotes action and u denotes internal state. The layer
si denotes the external state. In bottom three layers, q denotes second agent’s
controller nodes, b denotes action and v denotes the internal state

subgroup l, then sl=〈si1 , . . . , sik〉 denotes the internal states of these agents. Similarly,
al = 〈ai1 , . . . , aik〉. In the sensor network 5P in Figure 11, the reward is decomposed
among five subgroups, one per each edge. The reward function thus induces an inter-
action hypergraph in which hyperlink l connects the subset of agents which form the
reward component Rl.

bo bo = (bu, b1, . . . , bn) is the initial belief for joint state s = 〈su, s1, . . . , sn〉 and b(s) =
bu(su) ·∏n

i=1 bi(si).

The joint-value function in ND-POMDPs satisfies the value factorization property as fol-
lows (Nair et al., 2005):

V (θ, s) =
∑
l

Vl(θ
l, su, sl).

There is one value factor Vl for each link l. We next present a T-step DBN for a factor l
that involves two agents. This DBN is the basis for the time-dependent DBN mixture for
value factor l. For ease of exposition, the nodes of the controller of one agent are denoted
by p and those of the other agent by q. The internal states, actions, observations of the
first agent are denoted by u, a, y respectively and v, b, z denote the same for the second
agent. The external state is denoted by s. As shown in Section 5.4.1, the E step of the
EM algorithm requires separate inference, one for each value factor Vl. Therefore, we only
derive the inference required in the time dependent mixture corresponding to the DBN in
Figure 13. Notice that it differs from the inference for a two-agent general Dec-POMDP
due to the presence of conditional transition and observation independence. This property
will be exploited during the E-step. The policy parameters to be optimized are defined for
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agent 1 (analogously for agent 2 as well) as:

πapu = P (a|p, u) (71)

λp′py = P (p′|p, y) (72)

νp = P (pt=0 = p) (73)

Notice that we also included the internal state u in the action parameter πapu. This repre-
sents more expressive and accurate policy as agents have full observability of the internal
state. Next, similar to Section 4.4, we define the following Markovian chain in the DBN of
Figure 13:

P (p′,q′,s′,u′,v′|p, q, s, u, v) = P (p′,u′|p, u, s)P (q′,v′|q, v, s)P (s′|s) (74)

P (p′,u′|p, u, s) =
∑
a,y

λp′pyPu′auPyasuπapu (75)

P (q′,v′|q, v, s) can be expressed similarly. These transitions are independent of time as we
use a stationary policy. Based on these transitions, we define the forward α messages as
follows: αt = Pt(p, q, s, u, v; θ). Intuitively, αt represents the probability that controllers of
agents on the link are in state (p, q), their internal state is (u, v) and the external state is s
at time t. These messages are defined as:

α0(p, q, s, u, v) = νpνqbo(s, u, v) (76)

αt(p
′,q′,s′,u′,v′) =

∑
p,q,s,u,v

P (p′,q′,s′,u′,v′|p, q, s, u, v)αt−1(p, q, s, u, v) (77)

Similarly backward β messages are defined as follows: βτ =PT−τ (r=1|p, q, s, u, v; θ), with
τ = 0 representing the tail end of each DBN. As shown by Toussaint et al. (2006), thanks to
this notation, all the DBNs share the same tail. Hence we only need one sweep to compute
the β messages. We get:

β0(p, q, s, u, v)=
∑
a,b

R̂suvabπapuπbqv (78)

βτ (p, q, s, u, v)=
∑

p′,q′,s′,u′,v′

βτ−1(p′,q′,s′,u′,v′)P (p′,q′,s′,u′,v′|p, q, s, u, v) (79)

βτ represents the normalized expected reward for the link when the controllers of the agents
are in state (p, q), their internal state is (u, v) and the external state is s at time T − τ ,
given the policy parameters θ. Based on α and β messages, we also calculate two more
quantities:

α̂(p, q, s, u, v) =
∞∑
t=0

P (T = t)αt(p, q, s, u, v), (80)

β̂(p, q, s, u, v) =

∞∑
τ=0

P (T =τ)βτ (p, q, s, u, v). (81)
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The cutoff time for α and β message propagation can be fixed as shown in Section 4.4. As
shown in Section 5.4.1, the expectation required for action updates is the following in the
time dependent DBN mixture for the link l:

Elθ[r=1, a, p, u]=
∞∑
T=0

P (T )
T∑
t=0

P (r=1, at=a, pt=p, ut = u|T ; θl) (82)

Breaking the inner summation for the last time step T and the remainder, we get:

=
∞∑
T=0

P (T )PT (r=1, a, p, u)+
∞∑
T=0

P (T )
T−1∑
t=0

Pt(r=1, a, p, u)

=
∞∑
T=0

∑
svqb

R̂suvabπapuπbqvαT (p, q, s, u, v)+
∞∑
T=0

P (T )
T−1∑
t=0

∑
p′q′s′u′v′

βT−t−1(p′,q′,s′,u′,v′)Pt(a,p,u, p′,q′,s′,u′,v′)

For the last equality, we marginalized over the variables in the intermediate time slice. By
moving the summation over time T inside for the last time slice, and further marginalizing
the intermediate time slice t over (q, s, v), we get:

= πapu
∑
svqb

R̂suvabπbqvα̂(p, q, s, u, v) +
∞∑
T=0

P (T )
T−1∑
t=0

∑
qvsp′q′s′u′v′

βT−t−1(p′, q′, s′, u′, v′)P (p′, u′|a, p, u, s)

P (q′, v′|q, v, s)Ps′sπapuαt(p, q, s, u, v)

Upon resolving the time summation for the second part of the equation (Toussaint et al.,
2006), we get the final expression:

Elθ[r=1, a, p, u] =πapu
∑
qsv

α̂(p, q, s, u, v)

[∑
b

R̂suvabπbqv +
γ

1− γ∑
p′q′s′u′v′

β̂(p′, q′, s′, u′, v′)P (p′, u′|a, p, u, s)P (q′, v′|q, v, s)Ps′s
]

The expectation Elθ[r = 1, b, q, v] for the other agent can be calculated in an analogous
manner.

We now derive the expectation for controller node transition update:

Elθ[r=1, p, p̄, y]=

∞∑
T=1

P (T )

T∑
t=1

P (r=1, pt=p, pt−1 = p̄, yt=y|T ; θl) (83)

By simplifying the above equation, we get:

=
∞∑
T=1

P (T )
T∑
t=1

∑
qsuv

βT−t(p, q, s, u, v)Pt(p, q, s, u, v, p̄, y)
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Upon further marginalizing over the (q̄, s̄, ū, v̄), we get:

=

∞∑
T=1

P (T )

T∑
t=1

∑
q̄s̄ūv̄qsuv

[
βT−t(p, q, s, u, v)Pt(p, q, s, u, v|p̄, q̄, s̄, ū, v̄, y) ·

P (y|p̄, ū, s̄)αt−1(p̄, q̄, s̄, ū, v̄)

]
=

∞∑
T=1

P (T )
T∑
t=1

λpp̄y
∑

q̄s̄ūv̄qsuv

[
βT−t(p, q, s, u, v)αt−1(p̄, q̄, s̄, ū, v̄)P (y|p̄, ū, s̄) ·

P (u|p̄, ū, y)Pss̄P (q, v|q̄, v̄, s̄)
]

= λpp̄y
∑

q̄s̄ūv̄qsuv

β̂(p, q, s, u, v)α̂(p̄, q̄, s̄, ū, v̄)P (u, y|p̄, ū, s̄)Pss̄P (q, v|q̄, v̄, s̄)

where P (u, y|p̄, ū, s̄), P (q, v|q̄, v̄, s̄) are defined as:

P (u, y|p̄, ū, s̄) =
∑
ā

PuāūPyās̄ūπāp̄ū (84)

P (q, v|q̄, v̄, s̄) =
∑
b̄z

λqq̄zPvb̄v̄Pzb̄s̄v̄πb̄q̄v̄ (85)

The final equation for Elθ[r=1, p, p̄, y] is given by:

Elθ[r=1, p, p̄, y]=λpp̄y
∑

q̄s̄ūv̄qsuv

β̂(p, q, s, u, v)α̂(p̄, q̄, s̄, ū, v̄)P (u, y|p̄, ū, s̄)Pss̄P (q, v|q̄, v̄, s̄)

(86)
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Grześ, M., Poupart, P., Yang, X., & Hoey, J. (2015). Energy efficient execution of POMDP
policies. IEEE Transactions on Cybernetics, preprint.

Hansen, E. A., Bernstein, D. S., & Zilberstein, S. (2004). Dynamic programming for partially
observable stochastic games. In Proceedings of the 19th AAAI Conference on Artificial
Intelligence, pp. 709–715.

Hoffman, M., de Freitas, N., Doucet, A., & Peters, J. (2009a). An expectation maximiza-
tion algorithm for continuous Markov decision processes with arbitrary rewards. In
Proceedings of the International Conference on Artificial Intelligence and Statistics,
pp. 232–239.

Hoffman, M., Kueck, H., de Freitas, N., & Doucet, A. (2009b). New inference strategies for
solving Markov decision processes using reversible jump MCMC. In Proceedings of
the International Conference on Uncertainty in Artificial Intelligence, pp. 223–231.

Kiselev, I., & Poupart, P. (2014a). Policy optimization by marginal-map probabilistic in-
ference in generative models. In Proceedings of the International Conference on Au-
tonomous Agents and Multi-agent Systems, pp. 1611–1612.

Kiselev, I., & Poupart, P. (2014b). POMDP planning by marginal-MAP probabilistic infer-
ence in generative models. In Proceedings of the 2014 AAMAS Workshop on Adaptive
Learning Agents.

Koller, D., & Parr, R. (1999). Computing factored value functions for policies in struc-
tured MDPs. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence, pp. 1332–1339.

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press.

Kumar, A., & Zilberstein, S. (2009a). Constraint-based dynamic programming for decentral-
ized POMDPs with structured interactions. In Proceedings of the Eighth International
Conference on Autonomous Agents and Multiagent Systems, pp. 561–568.

Kumar, A., & Zilberstein, S. (2009b). Event-detecting multi-agent MDPs: Complexity
and constant-factor approximation. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, pp. 201–207.

Kumar, A., & Zilberstein, S. (2010a). Anytime planning for decentralized POMDPs us-
ing expectation maximization. In Proceedings of the Conference on Uncertainty in
Artificial Intelligence, pp. 294–301.

Kumar, A., & Zilberstein, S. (2010b). Point-based backup for decentralized POMDPs:
Complexity and new algorithms. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems, pp. 1315–1322.

Kumar, A., Zilberstein, S., & Toussaint, M. (2011). Scalable multiagent planning using
probabilistic inference. In Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, pp. 2140–2146.

Lauritzen, S. L., & Nilsson, D. (2001). Representing and solving decision problems with
limited information. Management Science, 47, 1235–1251.

267



Kumar, Zilberstein, & Toussaint

Liu, Q., & Ihler, A. T. (2012). Belief propagation for structured decision making. In
Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence,
Catalina Island, CA, USA, August 14-18, 2012, pp. 523–532.

Liu, Q., & Ihler, A. T. (2013). Variational algorithms for marginal MAP. Journal of
Machine Learning Research, 14 (1), 3165–3200.

MacDermed, L. C., & Isbell, C. (2013). Point based value iteration with optimal belief com-
pression for Dec-POMDPs. In Advances in Neural Information Processing Systems,
pp. 100–108.

Marecki, J., Gupta, T., Varakantham, P., Tambe, M., & Yokoo, M. (2008). Not all agents
are equal: Scaling up distributed POMDPs for agent networks. In Proceedings of the
7th International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 485–492.

Mostafa, H., & Lesser, V. R. (2009). Offline planning for communication by exploiting struc-
tured interactions in decentralized MDPs. In International Conference on Intelligent
Agent Technology, pp. 193–200.

Mostafa, H., & Lesser, V. R. (2011). Compact mathematical programs for DEC-MDPs
with structured agent interactions. In International Conference on Uncertainty in
Artificial Intelligence, pp. 523–530.

Mundhenk, M., Goldsmith, J., Lusena, C., & Allender, E. (2000). Complexity of finite-
horizon Markov decision process problems. J. ACM, 47 (4), 681–720.

Nair, R., Varakantham, P., Tambe, M., & Yokoo, M. (2005). Networked distributed
POMDPs: A synthesis of distributed constraint optimization and POMDPs. In Pro-
ceedings of the 20th AAAI Conference on Artificial Intelligence, pp. 133–139.

Nair, R., Tambe, M., Yokoo, M., Pynadath, D., Marsella, S., Nair, R., & Tambe, M. (2003).
Taming decentralized POMDPs: Towards efficient policy computation for multiagent
settings. In Proceedings of the 18th International Joint Conference on Artificial In-
telligence, pp. 705–711.

Oliehoek, F. A., Spaan, M. T. J., Amato, C., & Whiteson, S. (2013). Incremental clustering
and expansion for faster optimal planning in Dec-POMDPs. Journal of Artificial
Intelligence Research, 46, 449–509.

Oliehoek, F. A., Spaan, M. T. J., & Vlassis, N. A. (2008). Optimal and approximate Q-value
functions for decentralized POMDPs. Journal of Artificial Intelligence Research, 32,
289–353.

Oliehoek, F. A., Whiteson, S., & Spaan, M. T. J. (2013). Approximate solutions for factored
dec-pomdps with many agents. In Proceedings of the 12th International Conference
on Autonomous Agents and Multiagent Systems, pp. 563–570.

Pajarinen, J., Hottinen, A., & Peltonen, J. (2014). Optimizing spatial and temporal reuse
in wireless networks by decentralized partially observable Markov decision processes.
IEEE Transactions on Mobile Computing, 13 (4), 866–879.

Pajarinen, J., & Peltonen, J. (2011a). Efficient planning for factored infinite-horizon DEC-
POMDPs. In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, pp. 325–331.

268



Probabilistic Inference for Multiagent Decision Making

Pajarinen, J., & Peltonen, J. (2011b). Periodic finite state controllers for efficient POMDP
and DEC-POMDP planning. In Advances in Neural Information Processing Systems,
pp. 2636–2644.

Pajarinen, J., & Peltonen, J. (2013). Expectation maximization for average reward decen-
tralized POMDPs. In Proceedings of the European Conference on Machine Learning,
pp. 129–144.

Pineau, J., Gordon, G., & Thrun, S. (2006). Anytime point-based approximations for large
POMDPs. Journal of Artificial Intelligence Research, 27, 335–380.

Poupart, P., & Boutilier, C. (2003). Bounded finite state controllers. In Advances in Neural
Information Processing Systems.

Poupart, P., Lang, T., & Toussaint, M. (2011). Analyzing and escaping local optima in
planning as inference for partially observable domains. In European Conference on
Machine Learning, pp. 613–628.

Seuken, S., & Zilberstein, S. (2007). Memory-bounded dynamic programming for DEC-
POMDPs. In Proceedings of the 20th International Joint Conference on Artificial
Intelligences, pp. 2009–2015.

Smith, T., & Simmons, R. (2004). Heuristic search value iteration for POMDPs. In Inter-
national Conference on Uncertainty in Artificial Intelligence, pp. 520–527.

Toussaint, M., Harmeling, S., & Storkey, A. (2006). Probabilistic inference for solving
(PO)MDPs. Tech. rep. EDIINF-RR-0934, University of Edinburgh, School of Infor-
matics.

Toussaint, M., Charlin, L., & Poupart, P. (2008). Hierarchical POMDP controller opti-
mization by likelihood maximization. In International Conference on Uncertainty in
Artificial Intelligence, pp. 562–570.

Toussaint, M., & Storkey, A. J. (2006). Probabilistic inference for solving discrete and
continuous state Markov decision processes. In International Conference on Machine
Learning, pp. 945–952.

Varakantham, P., Marecki, J., Yabu, Y., Tambe, M., & Yokoo, M. (2007). Letting loose
a SPIDER on a network of POMDPs: Generating quality guaranteed policies. In
Proceedings of the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 1–8.

Varakantham, P., Kwak, J., Taylor, M. E., Marecki, J., Scerri, P., & Tambe, M. (2009).
Exploiting coordination locales in distributed POMDPs via social model shaping. In
Proceedings of the 19th International Conference on Automated Planning and Schedul-
ing, pp. 313–320.

Witwicki, S. J. (2011). Abstracting Influences for Efficient Multiagent Coordination Under
Uncertainty. Ph.D. thesis, Department of Computer Science, University of Michigan,
Ann Arbor.

Witwicki, S. J., & Durfee, E. H. (2010). Influence-based policy abstraction for weakly-
coupled Dec-POMDPs. In Proceedings of the 20th International Conference on Auto-
mated Planning and Scheduling, pp. 185–192.

269



Kumar, Zilberstein, & Toussaint

Witwicki, S. J., & Durfee, E. H. (2011). Towards a unifying characterization for quantifying
weak coupling in Dec-POMDPs. In Proceedings of the 10th International Conference
on Autonomous Agents and Multiagent Systems, pp. 29–36.

Wu, F., Zilberstein, S., & Chen, X. (2010). Trial-based dynamic programming for multi-
agent planning. In Proceedings of the 24th AAAI Conference on Artificial Intelligence,
pp. 908–914.

Wu, F., Zilberstein, S., & Jennings, N. R. (2013). Monte-Carlo expectation maximization
for decentralized POMDPs. In Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, pp. 397–403.

270


