
Dynamic Programming Approximations for Partially Observable
Stochastic Games

Akshat Kumar and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01002, USA

Abstract

Partially observable stochastic games (POSGs) provide a rich
mathematical framework for planning under uncertainty by a
group of agents. However, this modeling advantage comes
with a price, namely a high computational cost. Solving
POSGs optimally quickly becomes intractable after a few de-
cision cycles. Our main contribution is to provide bounded
approximation techniques, which enable us to scale POSG al-
gorithms by several orders of magnitude. We study both the
POSG model and its cooperative counterpart, DEC-POMDP.
Experiments on a number of problems confirm the scalability
of our approach while still providing useful policies.

Introduction
Partially observable stochastic games (POSGs) provide a
general, powerful paradigm for decentralized decision mak-
ing by a group of agents. POSGs allow agents to have con-
flicting goals in their general form or to share a common re-
ward structure as in DEC-POMDPs (Bernstein et al. 2002).
While there has been some progress with applying stochas-
tic games in multi-agent planning and learning (Boutilier
1999), research on stochastic games with partial observabil-
ity has been sparse. Partial observability is particularly use-
ful when agents cannot completely observe their environ-
ment or when different agents perceive different observa-
tions. Examples include soccer playing robots, multirobot
coordination (Seuken and Zilberstein 2007a) and broadcast
channel protocols (Bernstein et al. 2002).

An optimal dynamic programming algorithm for POSGs
has been developed by Hansen, Bernstein, and Zilberstein
(2004). Dynamic programming for POSGs resembles in
some ways POMDP solution techniques, but subtle yet sig-
nificant differences disallow the direct import of POMDP al-
gorithms. Value iteration for a POMDP works by transform-
ing it into a completely observable continuous-state MDP
over belief states. However, in POSGs, the environment
state changes as a function of the joint action of all agents.
Since agents do not have access to other agents policies dur-
ing plan execution, they cannot maintain the same kind of
belief state statistics. This problem is alleviated by introduc-
ing the notion of a generalized belief state (Hansen, Bern-

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

stein, and Zilberstein 2004). That is, agents maintain a be-
lief over the underlying state as well as over the policies of
other agents.

The optimal algorithm, however, quickly becomes in-
tractable beyond a small horizon (≈4) (Hansen, Bernstein,
and Zilberstein 2004). The main aim of our work is to in-
crease the scalability of dynamic programming algorithms
by multiple orders of magnitude. We achieve this by pro-
viding a memory bounded representation of the value func-
tion defined over the generalized belief space. Our technique
also provides an error bound over the optimal policies. Such
techniques were shown to be successful in the POMDP do-
main (Feng and Hansen 2001; Varakantham et al. 2007) and
we extend them to POSGs.

Finite horizon cooperative POSGs or DEC-POMDPs
have been shown to be NEXP-complete (Bernstein et al.
2002). DEC-POMDP algorithms (Seuken and Zilberstein
2007b) are similar to dynamic programming for general
POSGs. Additionally, they exploit the cooperative nature
of the agents to introduce heuristics that prune a large part
of the search space. We use our approximation techniques
in conjunction with an existing approach, MBDP (Seuken
and Zilberstein 2007b). MBDP works within a pre-specified
memory bounds, but it requires exponential space in the
number of agents and number of observations. Our im-
provement, MBDP-AS, has the anyspace characteristic and
is much more scalable than MBDP. Experiments on a par-
ticularly large problem show the effectiveness of MBDP-AS
in finding near optimal policies w.r.t. MBDP, using up to an
order of magnitude less space.

Background
This section introduces the POSG model. For details we
refer to (Hansen, Bernstein, and Zilberstein 2004).

Partially observable stochastic games
A partially observable stochastic game can be defined as a
tuple 〈Ag,S, b0, {Ai}, {Oi},P, {Ri}〉
• Ag is a finite set of agents indexed 1, . . . , n

• S is a finite set of environment states
• b0 ∈ ∆(S) is the initial state distribution
• Ai is the finite set of actions for agent i. The joint action−→a ∈ ×i∈AgAi is given by 〈a1, . . . , an〉

• Oi is a finite set of observations for agent i. The joint
observation −→o ∈ ×i∈AgOi is given by 〈o1, . . . , on〉

• P is a set of state transition and observation probabilities.
P(s′,−→o |s,−→a) is the probability of taking joint action −→a
in state s resulting in transition to state s′ and receiving
joint observation −→o

• Ri : S ×
−→
A → < is the reward function for agent i,

−→
A is

the set of all joint actions.

At each step of the game, the agents simultaneously
choose actions, receive a reward and an observation. The
environment transitions stochastically into a different state
and the above process repeats. The goal for each agent is
to maximize the expected sum of rewards it receives during
the game. In DEC-POMDPs, the reward function Ri is the
same for all agents requiring them to work cooperatively.

A policy for an agent is a mapping from local observation
histories to actions. Policies can be represented as trees. In a
policy tree, the root node defines the action taken at time step
t = 0. The edges of the tree represent the possible observa-
tions and lead to a new action which will be executed upon
receiving that observation. The depth of the tree defines the
horizon T of the problem.

Generalized belief state Since agents do not communi-
cate during execution time, they do not directly observe
other agents policies and cannot maintain the belief over en-
vironment states. A generalized belief is defined for each
agent i, which maintains a belief over the underlying state
as well as the policies of other agents. It is described by a
distribution over S × Q−i, where Q−i is the set of policies
of all other agents. The distribution is denoted by bi. The
generalized belief space for agent i is denoted by Bi. The
value of agent i’s belief is given by

Vi(bi) = max
p∈Qi

∑
s∈S,q−i∈Q−i

bi(s, q)Vi(s, p, q−i)

where Qi is the set of policies of agent i. Assuming two
agents, Vi(s, p, q) is the value of agent i’s policy p when
other agent executes its policy q and the environment is in
state s. It can be easily calculated from problem specifica-
tions. Similar to POMDPs, the value function Vi for agent i
is |S ×Q−i| dimensional, piecewise linear and convex.

Dynamic programming for POSGs We describe briefly
dynamic programming over generalized belief states. Given
depth-t policy trees Qt

i for each agent i, the multi-agent
backup operator H performs the exhaustive backup of these
trees to get Qt+1

i . Then it recursively computes the gen-
eralized value function V t+1

i . Subsequently, iterated elimi-
nation of dominated strategies is performed for each agent
i. This step is unique for POSGs and not applicable to
POMDPs. The domination condition is

∀b ∈ Bi,∃vk ∈ V t+1
i \vj s.t. b.vk ≥ b.vj (1)

The weakly dominated strategies represented by vj are elim-
inated from the respective policy tree sets, and this process
continues iteratively by alternating over agents until there
are no further changes. The above DP algorithm converts

the POSG to a normal form representation with reduced set
of strategies. Once QT

i is computed, standard techniques for
selecting equilibria in normal form games can be applied.

Bounded approximation using ε pruning
The key issue in the complexity of the DP algorithm is the
size of the vector set representing a value function after per-
forming the backup. The size of this vector set is reduced by
the iterated elimination of dominated strategies but it still re-
mains a key source of complexity. Our approximation tech-
niques further reduce this vector set size by introducing an
error of at most ε. The first approximation technique prunes
the policies which are higher valued than the remaining poli-
cies by at most ε. This technique is easy to implement but it
is somewhat limited as it does not prune every possible vec-
tor allowed by the ε error threshold. The next approximation
we propose mitigates this shortcoming and reduces the size
of the vector set further.

We start by defining the notion of ε dominated set fol-
lowed by the first approximation technique EPrune.

Definition 1. The vector set Γ representing the value func-
tion V is ε dominated by the set Γ′ representing V ′ iff
V (b) + ε ≥ V ′(b) for the given ε and any b. Γ is ε-
parsimonious if removal of any additional vectors from Γ
violates the ε domination condition i.e., Γ is the minimal
such set.

We describe below an approximation algorithm EPrune
which returns an ε dominated set V corresponding to the set
U produced by the backup operator H .

1. Choose an agent i

2. Initialize the set Vi with the dominant vectors at belief
simplex.

3. Choose a vector u ∈ Ui according to ordering Θ, use
the linear program shown in Algorithm 1 to find if u ε-
dominates Vi at any belief point b. If not, discard u.

4. Compute u′, the best vector at b, remove it from Ui and
add it to Vi. Repeat steps 3, 4 until Ui is empty.

The above algorithm is run iteratively for each agent i until
no more pruning is possible. Each iteration of EPrune intro-
duces an error of at most ε over the set U . For detailed proof
we refer to (Varakantham et al. 2007).

Proposition 1. For a given ordering Θ of the vectors in the
set U , EPrune is not guaranteed to return a parsimonious ε
dominated set V (per iteration).

Proof. The proof is by a counterexample. Figure 1(a) shows
a simplified vector set U defined over two states s1 and
s2. The individual numbers identify respective vectors. ε

Algorithm 1: εDOMINATE(α, U, ε)
1 variables:δ, b(s)∀s ∈ S
2 maximize δ
3

∑
s b(s)[α(s)− u(s)] ≥ δ + ε ∀u ∈ U

4
∑

s∈S b(s) = 1
5 if δ ≥ 0 return b else return null

!!

"

#

$
!

$
"

(a)

1

s
1

s
2

(b)

>!

1

2

s
1

s
2

(c)

1

2

3

s
1

s
2

>!

(d)

3

s
1

s
2

(e)

Figure 1: a) shows the vector set U . b) through d) show the steps of algorithm EPrune. e) Shows the ε dominated parsimonious
set for U .

is shown alongside as a line of length ε. Consider the or-
dering Θ = {1, 2, 3} for the vectors in U . During step 1
of EPrune, suppose we choose to initialize the set V with
the leftmost belief point. The best vector for this corner, 1,
is included in the current representation of V (Figure 1(b)).
Step 2 of EPrune selects the next vector, 2, in Θ. Since 2
dominates the current set V by more than ε (Figure 1(c)), it
will not be pruned by Algorithm 1. The remaining vector,
3, from U , is considered next and it also dominates current
V by more than ε (Figure 1(d)), so is retained in V . How-
ever we can easily see that V is not parsimonious though ε
dominated (Figure 1(d)). We can remove vectors 1 and 2
from V without affecting the ε domination condition. The ε
dominated parsimonious set is shown in Figure 1(e).

An important implication of proposition 1 is that algo-
rithm EPrune is sensitive to the ordering Θ used. For a
different ordering Θ′ = {3, 1, 2} for the set U in Figure
1(a), we will get the correct parsimonious ε-dominated set
shown in 1(e). Out next approximation technique improves
EPrune by further reducing the vector set size keeping the
error fixed.

IEPrune: improved epsilon pruning
The improved epsilon pruning scheme is based on better use
of the ordering of vectors in the set U for pruning. IEPrune
prunes much more vectors than EPrune while retaining the
same error ε. For a given upper bound on the size of approx-
imate vector set V , we can pack more useful vectors in V ,
thereby reducing the error ε than in EPrune.

Algorithm 3 shows the code for IEPrune. It takes as in-
put the vector set U , the error threshold ε, ordering Θ of
vectors in U and a user defined parameter k. It returns the
ε dominated set V for U . IEPrune can be logically divided
into three phases. Phase 1 (lines 6-10) is similar to EPrune
which removes all vectors which dominate V by less than ε.
In the next two phases, IEPrune tries to identify if more vec-
tors can be removed keeping the error fixed. During phase
2, it determines potential group of k vectors which can be
removed from V without increasing the error ε (using Al-
gorithm 2) and stores them in the Cliques set. In phase 3,
it removes all the vectors in the Cliques set from V pre-
emptively, adds back any vector which violates the ε domi-
nation condition.

Phase 2:. This part forms the basis for Phase 3; it iden-
tifies heuristically the potential candidate vector sets which
can be further pruned from V . The accuracy of the heuristic

Algorithm 2: isεConsistent(X, V , ε)

1 forall v ∈ X do
2 if εDOMINATE(v, V, ε) <> null then
3 Return false

4 Return true

depends on the parameter k. The set S denotes this poten-
tial set (line 11). It contains all subsets of size k of V , with
|S| = C

|V|
k . In the block lines 13-15, we try to identify

which members of S if removed from V will still make the
set V ε consistent. To ensure this, we also have to take into
account the vectors removed in previous iterations (each run
of the repeat-until block), stored in the set W (line 13). Set
Cliques contains the resulting vectors.

Phase 3: A candidate set is constructed which denotes
all vectors that potentially can be further pruned (line 16).
We preemptively remove all the vectors in candidates set
from V (line 17), and later add any vector that fails the
isεConsistent test ensuring that the error ε doesn’t in-
creases (line 22).

The above iteration continues until there are no more vec-
tors in U , and the resulting set V is returned.

Analysis of IEPrune
Proposition 2. IEPrune provides a ε dominated set V over
U i.e. ∀b ∈ B V(b) + ε ≥ U(b) where V(.) and U(.) repre-
sent the respective value function.

Proof. Phase 1 of IEPrune is the same as EPrune, so any
vector removed at this phase from the set V is ε dominated.
For proof see (Varakantham et al. 2007). After this there are
two cases possible:

In the first case, IEPrune does not prune any additional
vectors. Hence the set V remains ε dominated.

In the second case, IEPrune removes additional vectors
to EPrune. Recall that V represents a value function and
V(b) = maxv∈ΓV b.v. V is the final representation which is
obtained at the end of phase 3 for each iteration.

We prove the proposition by contradiction. Suppose that
∃b ∈ B s.t. V(b) + ε < U(b). Let vε

b = arg maxv∈ΓV b.v
and v?

b = arg maxv∈ΓU b.v for the current representation of
V,U . Also our assumption implies vε

b 6= v?
b and v?

b /∈ V . We
have

vε
b.b + ε < v∗b .b⇒ v∗b .b > vε

b.b + ε (2)

Algorithm 3: IEPrune (U , ε, Θ, k)
1 Returns: the set V ε dominated by U
2 V ← (remove) Best vectors from U at belief simplex
3 W ← φ, Cliques← φ
4 repeat
5 v ← Θ(U)
6 b← ε-DOMINATE(v, V , ε)
7 if b = null then
8 Skip to next iteration

9 v′ ← (remove) Best vector at b from U
10 V ← V ∪ v′

11 S ← {{vi}|vi ∈ V ∧ |{vi}| = k}
12 forall s ∈ S do
13 X ← s ∪W , V ′ ← V\s
14 if isεConsistent(X, V ′, ε) then
15 Cliques← Cliques ∪ s

16 Candidates← ∪isi | si ∈ Cliques
17 V ′ ← V\Candidates
18 Pruned← φ
19 forall v ∈ Candidates do
20 X ← {v} ∪W
21 if ¬isεConsistent(X, V ′, ε) then
22 V ′ ← V ′ ∪ {v}

else
23 Pruned← Pruned ∪ {v}

24 V ← V ′, W ←W ∪ Pruned

until U = φ
25 Return V

Consider the case when v∗b was considered by IEPrune.
If it was removed during phase 1, then the ε domination
proof of phase 1 contradicts our assumption. So surely
it must have been removed during phase 3. This im-
plies v?

b ∈ Candidates and consequently v?
b passed the

isεConsistent test (line 21) to be eligible for pruning.
From the condition of LP-DOMINATE in isεConsistent
test we have:

∃ṽ ∈ V ′ @b ∈ B s.t. v?
b .b ≥ δ + ε + ṽ.b and δ ≥ 0 (3)

At any point during the iteration of for loop (20-23) the fol-
lowing holds: V ′ ⊆ V and since vε

b is the best vector in V at
the belief b, we have vε

b.b ≥ ṽ.b. Combining this with eq 3
and substituting δ = 0, we get @b ∈ B s.t. v?

b .b ≥ ε + vε
b.b.

This is a contradiction to our assumption in Eq. 2. Hence the
proposition must hold.

It can be shown that the error ε accumulates during each
invocation of IEPrune like EPrune (Varakantham et al.
2007).

POSG experiments
We experiment on Multi access broadcast channel (MABC)
domain introduced in (Hansen, Bernstein, and Zilberstein
2004) and compare the performance of EPrune, IEPrune

Optimal EPrune IEPrune Random
Horizon # of

Policies
Policy
Value

2 (6, 6) 2.00 2.00 2.00 1
3 (20, 20) 2.99 2.99 2.99 1.49
4 (300, 300) 3.89 3.89 3.89 1.99
5 - - 4.79 4.79 2.47
8 - - 7.49 7.49 3.93
10 - - 9.29 9.29 4.90
100 - - 73.10 82.10 48.39

Table 1: Comparison of the scalability of different ap-
proaches over the MABC problem

with the optimal dynamic programming. The MABC prob-
lem involves two agent which take control of a shared chan-
nel for sending messages and try to avoid collisions. Table
1 shows the comparison of optimal dynamic programming
with the approximation schemes. The space requirements
for optimal DP become infeasible after horizon 4. In our
approximation schemes, we bounded the number of poli-
cies to 30 per agent and epsilon value was increased until
the policy tree sets were within the required size. Table 1
clearly shows the increased scalability of the approximation
techniques. Their performance matched with the optimal
policy until horizon 4. Using the bounded memory, these
schemes could execute up to horizon 100 (possibly even
further), multiple orders of magnitude over the optimal al-
gorithm. When comparing with a random policy, even for
larger horizons the approximations provided useful policies
achieving nearly 200% of the random value.

The next experiment was performed on the larger multi-
agent tiger problem (Seuken and Zilberstein 2007b). Figure
2 shows the comparison of IEPrune and EPrune on total er-
ror and ε value used for each horizon. We show the relative
percentage of the total error accumulated and the ε per hori-
zon i.e. εIEPrune/εEPrune × 100. The graph clearly shows
that IEPrune prunes more vectors and packs more useful
vectors within the given space requirements thereby reduc-
ing the total error and ε than EPrune. The next section de-
scribes application of IEPrune for DEC-POMDPs resulting
in an any space algorithm for solving DEC-POMDPs.

Any-space dynamic programming for
DEC-POMDPs

DEC-POMDPs are a special class of POSGs which allow
cooperative agents to share a common reward structure.
The number of possible policies per agent is of the order
O(|A||O|T) for horizon T . This explains why effective prun-
ing is crucial to make algorithms scalable.

Recently, a memory bounded dynamic programming
approach MBDP has been proposed for DEC-POMDPs
(Seuken and Zilberstein 2007b). MBDP limits the number
of policy trees retained at the end of each horizon to a prede-
fined threshold MaxTrees. The backup operation produces
|A|MaxTrees|O| policies for each agent for the next itera-
tion. MBDP then uses a portfolio of top-down heuristics
to select MaxTrees belief points and retains only the best

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 5 10 15 20 25 30 35 40 45 50

%
 v

al
ue

s

Horizon

Epsilon value
Total Error

Figure 2: IEPrune versus EPrune: % total error and ε value
used for each horizon

Algorithm 4: MBDP-Prune({Qi}, MaxJointPolicies)

1 JointPolicies← |Q1||Q2|
2 repeat
3 forall agent i ∈ Ag do
4 Sizei ←MaxJointPolicies/|Q−i|
5 Q′

i ← Randomly select Sizei policies from
Qi

6 evaluate(Q′
i, Q−i)

7 IEPrune(VQ′
i
, ε, Θ, k)

8 IncreaseEpsilon?
9 JointPolicies← |Q1||Q2|

until JointPolicies≤MaxJointPolicies

policies for each agent per sampled belief. To further re-
duce the complexity (Carlin and Zilberstein 2008) use par-
tial backups in their approach MBDP-OC and limit the num-
ber of possible observations to a constant MaxObs. This
results in |A|MaxTreesMaxObs policies for the next iter-
ation per agent. MBDP provides significant speedups over
existing algorithms but has exponential space complexity in
the observation space. We use the improved epsilon pruning
scheme IEPrune to make MBDP any space: MBDP-AS,
and also provide a bound on the error produced by IEPrune
over MBDP.

MBDP-AS
MBDP-AS takes a user defined parameter
MaxJointPolicies which restricts MBDP-AS to store
only MaxJointPolicies joint policies, effectively reduc-
ing the space requirements from |A|2MaxTrees2·MaxObs

to |S|MaxJointPolicies for two agents. MBDP-AS
introduces an extra step of pruning shown in Algorithm 4
just after the backup operation. Algorithm 4 prunes policies
of each agent until the total joint policies is within the
limit MaxJointPolicies. After this pruning step all
agents evaluate their policies against each other requiring
only O(|S|MaxJointPolicies) space and retain the best
policies for the beliefs sampled by the top-down heuristic.
We describe the Algorithm 4 in the following.

The motivation behind Algorithm 4 is that many policy

vectors which provide similar rewards can be pruned while
retaining only a representative subset of them. Such system-
atic pruning requirement is ideally achieved with IEPrune.
We call each execution of pruning (lines 4-9) an iteration
of MBDP-Prune. To avoid evaluating every joint policy for
agent i, we select a random subset of i’s policies such that
current total joint policies are within MaxJointPolicies
limit (lines 4,5). These joint policies are then evaluated (line
6). For the |S × Q−i| dimensional multi-agent belief b, the
policy vector associated with agent i’s policy p is given by
V (p) = (. . . , V (p, q−i, s) . . .), q−i ∈ Q−i, s ∈ S. The set
of all policy vectors of agent i is passed to IEPrune (line
7) which gives a smaller ε dominated set. For all the vectors
which are pruned by IEPrune we also prune the correspond-
ing policies from Qi. We then decide if to increase ε (line
8) to aggravate the pruning considering the time overhead,
and if no policy was pruned in the last iteration. This iter-
ative pruning continues until the JointPolicies are within
the specified limit.

Analysis of the MBDP-Prune operation
Proposition 3. The maximum number of iterations required
by the MBDP-Prune operation is (∆ − ε)/δ, where ε is the
initial epsilon value used, δ is the increment in epsilon after
each iteration. ∆ = maxb∈BM

(
minVi∈VQi

(V ?
b .b− Vi.b)

)
and V ?

b = argmaxVi∈VQi
Vi.b for any b.

Proof. The MBDP-Prune operation will continue to in-
crease epsilon (line 8) by the amount δ until the current joint
policies are within MaxJointPolicies limit. The worst
case is when there is only one policy vector V ′ allowed. V ′

must dominate all other vectors at some multi-agent belief
i.e. ∃b s.t. (V ′.b − Vi.b) ≥ 0 ∀Vi ∈ VQi , V

′ 6= Vi. The
quantity (V ′.b − Vi.b) must be the maximum for all belief
points so that setting epsilon to that value requires IEPrune
to prune every vector other than V ′. This amount is given by
∆. Consequently, the number of iterations required to raise
epsilon to ∆ are (∆− ε)/δ.

Proposition 4. Each iteration of MBDP-Prune results in
joint policy values that are at most ε below the optimal joint
policy value in MBDP for any belief state.

This results directly from proposition 2. For further de-
tails we refer the reader to (Amato, Carlin, and Zilberstein
2007). Proposition 4 forms the basis of quality guarantees
over the approximation. If n iterations of MBDP-Prune are
required to bring down the joint policies within the limit, the
maximum error at any belief is bounded by nε over MBDP
with no pruning.

MBDP-AS experiments
We built MBDP-AS on top of MBDP-OC (Carlin and Zil-
berstein 2008) which is similar to MBDP except that it uses
partial backups. The test problem we use is cooperative box
pushing (Carlin and Zilberstein 2008), which is substantially
larger than other DEC-POMDP benchmarks such as Tiger
and Multiagent Broadcast Channel (Seuken and Zilberstein
2007b). In this domain, two agents are required to push
boxes into the goal area. Agents have 4 available actions and

Joint Policies=11664 Joint Policies=2500
horizon IMBDP MBDP-OC MBDP-AS

5 79 72 69
10 91 103 93
20 96 149 148
30 89 168 170
40 68 244 228
50 81 278 268

Table 2: Comparison of IMBDP, MBDP-OC, MBDP-AS
on the Repeated Box Pushing domain with various horizons
(with MaxTrees = 3, MaxObs = 3)

Joint Policies=2500 Joint Policies=7000
horizon MaxTree = 3 MaxTree = 4

5 69 77
10 93 105
20 148 150
40 228 248

Table 3: Comparison of MBDP-AS for two settings: Max-
Tree=3 and MaxTree = 4. MaxObs=3 in both cases

can receive 5 possible observations. The number of states is
100. Full backups in MBDP are costly, so IMBDP (Seuken
and Zilberstein 2007a) and MBDP-OC (Carlin and Zilber-
stein 2008) take partial backups with MaxObs observa-
tions. We compare all three algorithms IMBDP, MBDP-OC
and MBDP-AS on two metrics: space requirements, which
is shown by the total number of joint policies stored and the
best policy value.

Table 2 compares all three algorithms on these met-
rics. MBDP-OC and IMBDP evaluate and store all
11664 joint policies, whereas in MBDP-AS we set the
MaxJointPolicies = 2500, which is nearly one fifth of
the total policies. Even at this greatly reduced policies the
quality of policies in MBDP-AS is comparable to MBDP-
OC. We only lose slightly for higher horizons (40-50) on
MBDP-OC while always superior to IMBDP for nearly all
horizons. This clearly depicts the effectiveness of MBDP-
AS which prunes selectively using IEPrune algorithm.

In the next set of experiments, MaxTrees was increased
to 4. This requires both IMBDP and MBDP-OC to store
and evaluate 65536 policies and is infeasible due to exces-
sive memory requirements. MBDP-AS still scaled well us-
ing MaxJointPolicies = 7000, about an order of mag-
nitude less policies than total joint policies. Table 3 com-
pares the result for MBDP-AS with MaxTrees = 3 and
MaxTrees = 4. As expected the quality of solution in-
creased for all horizons with the number of MaxTrees. This
further confirms the scalability of our approach and effec-
tiveness of MBDP-Prune operation.

As far as execution time is concerned MBDP-AS pro-
vided interesting results. The average time per horizon for
MaxTrees = 3 and MaxObs = 3 for MBDP-OC was
470sec. For MBDP-AS with the same parameters the aver-
age execution time per horizon was 390sec. The overhead
of linear programs used for pruning was more than com-
pensated by the lesser policy evaluations which MBDP-AS

performed. Total policy evaluations in MBDP-OC per hori-
zon was 2 × 11664 = 23328. MBDP-AS on the contrary
evaluates only MaxJointPolicies at one time and prunes
many policies. The effort to evaluate pruned policies in the
next iteration is saved, leading MBDP-AS to evaluate 16300
policies on average.

Conclusion
Our work targets the dynamic programming bottleneck
which is a common problem associated with value iteration
in DEC-POMDPs and POSGs. We have improved an exist-
ing epsilon pruning based approximation technique and our
improvement provides better error bound across all horizons
on the examined tiger problem. As a second application of
our new pruning technique, we incorporate it into an existing
algorithm, MBDP, for DEC-POMDPs and address a major
weakness of it: exponential space complexity. The new al-
gorithm MBDP-AS is an any-space algorithm, which also
provides error bounds on the approximation. Experiments
confirm its scalability even on problem sizes where other al-
gorithms failed. These results contribute to the scalability of
a range of algorithms that rely on epsilon pruning to approx-
imate the value function.

Acknowledgments
This work was supported in part by the AFOSR under Grant
No. FA9550-08-1-0181 and by the NSF under Grant No.
IIS-0812149.

References
Amato, C.; Carlin, A.; and Zilberstein, S. 2007. Bounded dy-
namic programming for Decentralized POMDPs. In Proc. of AA-
MAS workshop on Multi-agent sequential decision making in un-
certain domains, 31–45.
Bernstein, D.; Givan, R.; Immerman, N.; and Zilberstein, S. 2002.
The complexity of decentralized control of Markov Decision Pro-
cesses. Mathematics of Operations Research 27:819–840.
Boutilier, C. 1999. Sequential optimality and coordination in
multiagent systems. In Proc. of International Joint Conference
on Artificial Intelligence, 478–485.
Carlin, A., and Zilberstein, S. 2008. Value-based observation
compression for DEC-POMDPs. In Proc. of International Con-
ference on Autonomous Agents and Multiagent Systems, 501–508.
Feng, Z., and Hansen, E. 2001. Approximate planning for fac-
tored POMDPs. In Proc. of European Conference on Planning.
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004. Dy-
namic programming for partially observable stochastic games. In
Proc. of AAAI, 709–715.
Seuken, S., and Zilberstein, S. 2007a. Improved memory-
bounded dynamic programming for decentralized POMDPs. In
Proc. of Conference on Uncertainty in Artificial Intelligence.
Seuken, S., and Zilberstein, S. 2007b. Memory-bounded dynamic
programming for DEC-POMDPs. In Proc. of International Joint
Conference on Artificial Intelligence, 2009–2015.
Varakantham, P.; Maheswaran, R.; Gupta, T.; and Tambe, M.
2007. Towards efficient computation of error bounded solutions
in POMDPs: Expected Value Approximation and Dynamic Dis-
junctive Beliefs. In Proc. of International Joint Conference on
Artificial Intelligence, 2638-2644.

