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Abstract

This paper presents a control structure for gen-
eral purpose image understanding that addresses both
the high level of uncertainty in local hypotheses and
the computational complexity of image interpretation.
The control of vision algorithms is performed by an in-
dependent subsystem that uses Bayesian networks and
utility theory to compute the marginal value of infor-
mation provided by alternative operators and selects
the ones with the highest value. We have implemented
and tested this control structure with several aerial
image datasets. The results show that the knowledge
base used by the system can be acquired using standard
learning techniques and that the value-driven approach
to the selection of vision algorithms leads to perfor-
mance gains. Moreover, the modular system architec-
ture simplifies the addition of both control knowledge
and new vision algorithms.

1 Introduction

An Image Understanding (IU) system should be
able to identify objects in 2D images and to build
3D relationships between objects in the scene and the
viewer. A large number of image understanding sys-
tems developed so far are dedicated to aerial image
interpretation. One of the problems with aerial image
interpretation systems is the management of uncer-
tainty. Uncertainty in this case arises from a variety
of sources, such as the type of sensor, weather condi-
tions, illumination conditions, season, random objects
in the scene, and the inherent uncertainty in the defi-
nition of common objects.

Object recognition in aerial images is one impor-
tant step towards 3D reconstruction of a scene, but
automating the recognition process in a real world ap-
plication is not an easy task. Consider the image tiles

*Funded by the National Council for Scientific Research-
CNPq, Brazil grant number 260185/92.2, by the APGD-
DARPA project contract number DACAT76-97-K-0005, and by
Army Research Office, contract number DAAG55-97-1-0188

from aerial images presented in Figure 1. The tile on
top contains a building, which is easy to identify by
its door and rooftop. The recognition of the three ob-
jects marked in the bottom tile is not as simple, and
more detailed comparisons and measurements may be
required to identify them correctly.
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Figure 1: Different types of regions extracted from
aerial images

Since an interpretation of an image can be viewed
as a correspondence between image features and the
identifying object classes, it is clear that the descrip-
tive vocabulary of the system must be reflected in the
set of features extractable from the image. Thus the
image features must form the primitive descriptions of
the objects in the knowledge base. Since every feature
has at least one operator for measuring it, the con-
trol problem we address in this paper is this: given a
general purpose system and a specific interpretation
problem within the domain of the system, how do we
effectively select the features to measure or, more gen-
erally, which algorithms to apply, and in what order.
Furthermore, because there is a significant amount of
inherent ambiguity in the interpretation process, an
interpretation system must include a sufficiently rich
set of relations among features as well as flexible mech-
anisms for manipulating uncertain hypotheses until
there is a convergence of evidence.

In this paper we show how to use Bayesian net-



works and utility theory to build a control structure
for a general purpose image understanding system.
We also address the knowledge engineering issue by
demonstrating that it is possible to learn the Bayesian
network structures from fairly coarse training informa-
tion. Ascender II, an TU system for fully automated
Aerial Image Interpretation, is used as a testbed to
address these questions:

e How can the results of a visual operators and their
associated uncertainties be combined in order to
classify a particular image region?

e How can the hierarchical structure of objects be
exploited in order to construct an incremental
classification process?

e Can the construction of the knowledge base be
simplified (or fully automated) for a particular
application using both human expertise and ma-
chine learning techniques?

e Can performance be improved by using a disci-
plined approach to operator selection?

The next section presents an abbreviated summary
of related work previous work. Section 3 introduces
the Ascender II system and presents its control struc-
tures, specifically how operators are ordered given the
current knowledge. Section 4 shows how to learn the
structures used for control. Experimental results are
presented in Section 5 and conclusions plus future di-
rection of this work are outlined in Section 6.

2 Background

One popular approach in the 1980’s to the gen-
eral Image Understanding problem was knowledge-
directed vision systems. A typical knowledge-directed
approach to image interpretation seeks to identify ob-
jects in unconstrained two-dimensional images and
to determine the three-dimensional relationships be-
tween these objects and the camera by applying
object- and domain-specific knowledge to the inter-
pretation problem. A survey of this line of research in
computer vision can be found in [6], [5], and [4].

Typically, a knowledge-based vision system con-
tains a knowledge base, a controller, and knowledge
sources (or visual operators). In most of these systems
the controller and the vision algorithms are combined
into a single system. Problems common to most of
the knowledge-directed vision systems include: control
for vision procedures was never properly addressed as
an independent problem [5], the system’s structure
did not facilitate entry of new knowledge [4], and the

knowledge engineering task was formidable [5]. These
are some of the issues that are addressed in this paper.

Bayesian networks have been successfully used in
systems required to combine and propagate evidence
for and against a particular hypothesis. Vision sys-
tems have been developed using Bayesian networks
for knowledge representation and as a basis for infor-
mation integration, e.g. Rimey [15], Binford [13] and
Krebs [10] (for indoor applications), and Kumar [11]
(for aerial image interpretation).

3 Value-driven control of a vision algo-
rithms

The Ascender II system was designed for aerial im-
age interpretation, particularly for the 3D reconstruc-
tion of urban areas. The system is divided into two
independent parts - the reasoning subsystem and the
visual subsystem - running under different operating
systems on different machines, as shown in Figure 2.
One advantage of this design is that changes in the
reasoning subsystem, or in the visual subsystem, can
be made independently.
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Figure 2: Process overview. Decisions are based on
current knowledge about the site. Vision algorithms,
stored in the visual subsystem, gather evidence about
the site through focus of attention regions (FOAs),
update the knowledge base, and produce geometric
models.

Although the initial effort has focused primarily on
recognizing and reconstructing buildings from aerial
images, Ascender II has been designed as a general
purpose vision system. The system has a set of focus-
of-attention regions as input. These regions can be
extracted from aerial images automatically (using a
system such as Ascender I [3]), manually, or interac-
tively (using cues from other sources such as maps or
other classified images). The system’s goal is to au-
tomatically select vision algorithms, recognize objects
in the scene, and reconstruct these objects in 3D.

The system’s knowledge base is composed of a set of
Bayesian networks organized hierarchically. The net-



works are used to integrate information from different
sources, and to label a region based on information
provided by the visual operators. Each level of the hi-
erarchy represents object classes at a specific scale [9].
The hierarchy leads to a system capable of performing
incremental classification. The classification process is
refined until the hierarchy reaches its finest level, or
until the system exhausts all resources available. The
Bayesian networks were developed using the HUGIN
system [1].

The first set of networks were developed manually;
two of the five networks used in the system are pre-
sented in Figure 3 and 4. The root node corresponds
to the focus of attention region at a specific level of
detail. All leaf nodes correspond to visual operators,
and all internal nodes correspond to features that can
be measured in the image. The probability table as-
sociated with the links between a feature node and an
operator node reflects the reliability of the operator
in retrieving the value of the feature; a link between
the root node and the internal nodes represent rela-
tionships between object classes and feature values.
The probability tables related to these links reflect
the probability that a feature has a certain value given
that the region is a certain object class, or:

P(Feature = k|Region = Object_1)

Figure 3: The level 0 hand-crafted network determines
if a region belongs to one of the possible object classes
(Building, Parking Lot, Open Field, or Other).

A set of experiments have been performed to com-
pare alternative evaluation measures for operator se-
lection. The first of these, called uncertainty distance
[14], represents the difference between the value of the
maximum belief in a node and the value of the belief
if the node had a uniform distribution. Given a net-
work, the system computes the uncertainty distance
for all nodes that have a correspondent IU process
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Figure 4: The level 2 hand-crafted network used to de-
termine the type of rooftop (Peaked, Flat, Flat-Peak,
Cylinder, or Other), once a single building is detected.

and selects the node with the minimum uncertainty
distance. This was shown empirically to be equivalent
to entropy as an evaluation measure. We have also
shown that using uncertainty distance leads to a sys-
tem which uses significantly less resources (operators)
than an exhaustive strategy yet achieves comparable
performance [14].

The work presented here uses the same system ar-
chitecture, but it employs utility theory for selecting
the operators to apply[12]. Utility theory is a proba-
bilistic technique for decision making and it fits well in
a Bayesian network system. Utility theory selects the
decision that has the highest expected utility. In the
discussion that follows, we use the following notation:

o R; def region R belongs to Class j.
e DR; 4 the decision that region R is identified
as Class j.

e B Y all the evidence collected so far.
o I, 4f feature F is discretized in m states.

The expected utility (EU) of each decision is com-
puted using the probability that a region belongs to
a class j, P(R;|E), and the utility of deciding that
a region is in class ¢ given that the region belongs to
class j, U(DR;|R;), [12]:

N
U(DRi|E) = U(DR;|R;) * P(R;|E)
j=1

The current utility of the decision is defined as the
maximum value among each of the expected utilities:

maz(EU(DR;|E))



Table 1: The table shows all utilities for the level 0
network in the Ascender II system.

Decide Class
Building | Park. Lot | Open Field | Other
Building 1 0 0 0
Parking Lot 0 1 0 0
Open Field 0 0 1 0
Other 0 0 0 1

The best decision is defined as the decision @ which
gives the maximum expected utility:

a = argmaz;(EU(DR;|E))

In our problem domain the system has to decide
the most likely identity (e.g. label) of a region. As-
sume that there are K features that can be measured
in the region, the measurements are not completely
reliable, and the measurements help in deciding about
the region’s label.

The region’s prior probabilities and the conditional
probability tables relating features with labels are
stored in the Bayesian networks. The utility tables
storing the values U(DR;|R;) are not hard to define
and can be adjusted by the user of the system to re-
flect specific goals for the classification process [12].
The utility tables used here are all similar, with ones
on the diagonal and zeros in all other entries (see Table
1). In this case, only the correct labels are accepted.

Features are selected based on the value of infor-
mation [8] associated with each feature. This value is
computed as follows: for each feature currently avail-
able compute the expected utility of the system given
that information about the feature is known.

EU(DR;|E, F) = P(Fy)*maz;(EU(DR;|E, Fy,))
M

Now, compute the value of information of each fea-
ture as follows:

VI(Fm) :EU(DRQ’|E7Fm) _EU(DRa|E) (1)

and select the feature with the highest value of in-
formation. Intuitively, the value of information mea-
sures the expected improvement in the utility of the
best decision, once the result of an operator becomes
available.

Figure 5 shows a generic Bayesian network that will
be used to illustrate how feature selection is performed
in the Ascender IT system. The first step is to compute
the system’s utility before extracting any information
about the features. Each decision has an expected
utility U(Dec;) = EU(DR;|E); the expected utilities

of the decisions can be calculated by multiplying the
matrix of utilities by the column vector of beliefs from
the root node, as shown in Figure 5. The system’s
utility is the maximum value among the utilities of
the decisions.
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Figure 5: A generic Bayesian network for the Ascender
IT system

The next step is to compute the value of informa-
tion of each feature. This is performed by computing
the expected utility of each feature as follows: assume
feature “i” has “M” states, stateq, states, - - -, states;
each state in feature “i” has a corresponding belief,
bely, bels, - - -, belpr. These beliefs correspond to the
current, expectation about the outcome of feature “i”.
Set the outcome of feature “i” to state; (make the
belief of state; = 1 and the belief of all other states
equal to 0), and propagate the information through
the network. This will change the beliefs in the states
of the root node. Use this new set of beliefs in the
root node to compute the new utility of the system.
When completed, the value of information is found
from equation 1.

4 Learning the models for the control
structure

The knowledge engineering necessary to design a
efficient Bayesian network (structure and probability
tables) is a time consuming task, even for small net-
works such as those currently used in the Ascender IT
system. This has been one of the main criticisms of
Bayesian networks.

Algorithms for learning Bayesian networks from
data have been developed [7, 2]. Cheng’s algorithms
[2] are based on statistical measures over pairs of ran-
dom variables. The algorithms perform conditional
independent tests using mutual information, and con-



ditional mutual information given a third variable, and
use these tests to define causality. Cheng’s algorithms
were used to learn the structure and the probability
tables for the networks in the Ascender II system.

The data used for learning was collected from 3 dif-
ferent well-known data sets (Ft. Hood, Ft. Benning
and Avenches); overall, 79 regions were selected repre-
senting a mix of objects drawn from buildings, parking
lots, grassy fields, etc. All regions were presented to a
set of 6 human subjects, and the subjects were asked
to estimate the state of each feature in the feature set
(features were coarsely quantized to facilitate the hu-
man task). This information was compiled and used
to learn a Bayesian network representing the task do-
main.

Note that the structures as learned contain only the
node representing the region plus the nodes represent-
ing all the features. The operator nodes (along with
their reliability tables) were added manually after the
learning phase was complete. If the true value of each
feature is known, the tables representing the opera-
tor’s reliability can also be learned from the data.

The learned networks corresponding to Figures 3
and 4 are shown in Figure 6 and 7. The general struc-
ture is completely different, although some of the sub-
structures were preserved. Also, the learned networks
are generally more densely connected.

Figure 6: The level 0 learned network determines if
a region belongs to one of the possible object classes:
Building, Parking Lot, Open Field, or Other.

The networks learned from data are limited to the
objects present in the training data. For instance,
the data used to learn the networks had only peak-
and flat-roofed buildings. Thus the feature Rooftop in
Figure 7 has only states for Peak and Flat roofs, and
not the more general structure as in the hand-crafted
networks presented in Figure 4.
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Figure 7: This level 2 learned network is called after
a single building is detected. It is used to determine
the building’s rooftop type (Peak or Flat).

5 Results

A set of experiments were performed on the Fort
Hood data set (7 views with known camera parameters
and corresponding digital elevation map DEM) shown
in Figure 8, on the Avenches data set (1 view and a
DEM) shown in Figure 9, on the Fort Benning data
set (2 views and a DEM) shown in Figure 10, and on
the ISPRS Flat data set (2 views and a DEM) show
in Figure 11. These data sets are an effective test
suite because they have different numbers of images,
different resolutions and different numbers of objects
in each class.

The first experiment was designed to show that a
more disciplined approach to feature selection leads
to a more efficient system. The experiment provides a
comparison between the system using uncertainty dis-
tance (Basic System) and the system using utility the-
ory (System A). Both systems used the hand-crafted
networks. The results in terms of classification and
number of operators used are presented in Tables 2
and 3.

Table 3 shows that the overall classification ob-
tained by the two selection processes is about the
same. Table 2 shows that the selection of opera-
tors is more efficient using utility theory (10% fewer
operators). This result confirms the intuition that
a selection methodology using utility theory would
choose more effective operators, thus classifying re-
gions faster.

The second set of experiments was designed to
demonstrate the performance of the system using the
learned networks on the same data sets used for train-
ing. Although the regions used in the these experi-
ments are the same as the ones used for learning, there
are two major differences that have to be considered:



Table 2: Total number of calls to visual operators for
all data sets for all classes.
Decision process Number of Operators
Utility Theory 430
Uncertainty Distance 475

1. During the experimental phase the features were
computed algorithmically from the image data by
a visual operator. The results do not necessarily
correspond to the outcome given by humans in
the learning phase.

2. The values of the features computed by the visual
operator were entered into the operator’s node
and were attenuated by the operator’s reliability
during the propagation.

First, the networks and probability tables (includ-
ing prior probabilities) as learned from the data (Sys-
tem B) was applied in the 3 data sets (Ft. Hood,
Avenches and Ft. Benning). Because the prior prob-
abilities learned from data reflect the exact frequency
of each object class, the system should react faster
to feature values retrieved and it would not be a fair
comparison to System A. So a second test was per-
formed where the prior beliefs for each object class
were changed in the networks to reflect the same prior
probabilities used in the hand-crafted networks (Sys-
tem C). The results obtained for these two experi-
ments are shown in Tables 4 and 5.

Figure 8: The input regions from the Fort Hood data
set. These regions were obtained by running the orig-
inal Ascender I system constrained to detect two-
dimensional building footprints.

The numbers shown in Table 5 are similar to the
numbers presented in Table 3. Thus, the system using
Bayesian networks learned from data generates clas-
sifications very similar to the system using the hand-

Table 3: Summary of the recognition process for dif-
ferent data sets using the hand-crafted networks. In
each case the number of objects correctly identified is
shown, followed by the total number of objects evalu-
ated by the system.

Uncertainty Distance - Basic System

Data set Overall | Level 0 | Level 1 | Level 2

Fort Hood | 34/42 | 36/42 | 22/24 | 21/21

Avenches 12/18 | 15/18 | 12/13 5/7
Fort Benning | 17/19 | 18/19 | 17/18 | 17/18

Utility Theory - System A

Data set Overall | Level 0 | Level 1 | Level 2

Fort Hood | 35/42 | 37/42 | 23/25 | 21/21

Avenches 13/18 16/18 12/13 5/7
Fort Benning | 16/19 | 18/19 | 17/18 | 16/17

Table 4: Total number of calls to visual operators for
all data sets for all classes.
Decision process Number of Operators
Learned Networks 322
Learned + Modified Priors 400

Table 5: Summary of the recognition process for dif-
ferent data sets using the learned networks.

Learned Networks - System B

Data set Overall | Level 0 | Level 1 | Level 2

Fort Hood | 33/42 | 34/42 | 20/21 | 20/20

Avenches | 16/18 | 18/18 | 15/15 | 7/9
Fort Benning | 15/19 | 18/19 | 17/18 | 15/17

Learned Networks + Modified Priors - System C

Data set Overall | Level 0 | Level 1 | Level 2

Fort Hood | 34/42 | 35/42 | 20/21 | 20/20

Avenches 13/18 | 16/18 | 12/14 6/7
Fort Benning | 16/19 | 18/19 | 17/18 | 16/17

Table 6: Summary of the recognition process for the
Flat data sets using the hand-crafted and the learned
networks with utility theory.

Flat Data Set
System Overall | Level 0 | Level 1 | Level 2 | Operators
Hand-crafted | 22/30 23/30 21/21 13/14 170
Learned 26/30 27/30 21/21 13/14 162




Figure 9: The input regions from the Avenches data
set. The regions were obtained by running the Ascen-
der I system.

Figure 10: The input regions from the Fort Benning
data set. These regions were obtained by a combina-
tion of polygons extracted using Ascender I and poly-
gons extracted from SAR data.

crafted networks. However, “System B” was able to
classify the regions using 32% fewer operators than the
“Basic System”. “System C” used 15% fewer opera-
tors than the “Basic System”. The fact that “System
C” used more operators than the “System B” was ex-
pected because the distributions of beliefs over the ob-
ject classes were more uniformly distributed in “Sys-
tem C” than in “System B”, thus “System C” requires
more exploratory calls before deciding about a region.

The third experiment was designed to show that
the structure and relationships among features learned
from data is robust enough to be applied to a different
data set. In this experiment, the hand-crafted system
using utility theory was compared to the learned sys-
tem applied to the Flat data set. In both systems the
prior beliefs were adjusted accordingly. The results
over 30 regions are shown in Table 6.

Figure 11: Set of regions extracted by hand from the
Flat data set.

Figure 12: 3D reconstruction on the Fort Benning
data set.

The number of operators used by the system using
the learned networks is slightly smaller (5%), but the
larger number of relationships between the features
in the learned networks allowed better performance of
the system on the new data set (87% correct classifica-
tions against 73% for the system with the hand-crafted
networks).

One example of the 3D reconstruction that can be
obtained using the Ascender II system is presented in
Figure 12. The maximum error between the recon-
structed buildings and the CAD models hand-crafted
for the buildings in the Fort Benning data set is less
than 1.2 meters.

6 Conclusions and Future Work

The overall performance of the Ascender II system
using utility theory or uncertainty distance is above
80% in terms of classification. When utility theory
and value of information is used, the system selects
operators more efficiently and is able to identify ob-



jects faster.

The knowledge base in Ascender II is based on
Bayesian networks. Evidence from different sources
are combined in the Bayesian networks and each con-
tributes to the region classification.

We have also shown that the networks can be
learned from data. The system using the learned net-
works had a better performance either in terms of the
number of operators required to correctly classify the
regions, or in terms of the percentage of regions cor-
rectly classified. The data used to learn the networks
have to be representative of all objects classes de-
sired in the system. The learned networks are robust
enough to be applied in a different data set with a sim-
ple adjustment of prior beliefs for the object classes.

The hierarchical structure leads to a system capable
of performing incremental classification. The current
system can be adjusted to behave as an anytime sys-
tem, where resources, such as number of operators or
processing time, can be limited and the overall perfor-
mance optimized for the resources available.

Another possible extension of this system is related
to temporal reasoning. If a 3D reconstruction of a site
is available and a new image is obtained for the same
area, how can the information previously computed
be used to drive the system in order to detect changes
and to reconstruct the new site efficiently.
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