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Abstract

Progressive processing is an approach to
resource-bounded execution of a set of tasks un-
der time pressure. It allows a system to limit
the computation time allocated to each task
by executing a subset of its components and
by producing a sub-optimal result. Progressive
processing is a useful model for a variety of real-
time tasks such as diagnosis, planning, and in-
telligent information gathering. This paper de-
scribes recent results and new directions aimed
at generalizing the applicability of progressive
processing by addressing the issues of high du-
ration uncertainty and quality uncertainty asso-
ciated with each computational unit. We also
examine new ways to model inter-task quality
dependency and a richer topology of task struc-
tures.

1 The Progressive Processing Model

Progressive processing is a resource-bounded reasoning
technique that allows a system to satisfy a set of re-
quests under time pressure [8; 9]. The technique is
based on structuring each problem-solving component
as a hierarchy of levels, each of which contributes to
the overall quality of the result. The technique is suit-
able for a wide range of applications such as hierarchical
planning [6] and model-based diagnosis [1]. The abil-
ity to trade off computational resources against quality
of results is shared by other resource-bounded reasoning
techniques such as flexible computation [4], anytime algo-
rithms [13], imprecise computation [7; 5] and design-to-
time [2]. However, the distinctive hierarchical structure
of progressive processing facilitates an efficient manage-
ment of computational resources.

Progressive processing presents some interesting mod-
eling and control problems. The modeling problem in-
volves the characteristics of the environment and the pro-
gressive processing units (PRUs). For example, the en-
vironment may be dynamic with new PRUs being con-
stantly added. Each PRU may have its own deadline
and there may be uncertainty regarding the duration
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and quality of each problem solving component. The
meta-level control problem is the problem of deciding
how much computational time should be allocated to
each PRU. Initially, we assume that each PRU is an
independent problem solving task that needs to be exe-
cuted. Each PRU has a fixed number of computational
components, called levels, each of which contributes to
the overall quality of the result. When the system can-
not execute all the levels, it should select those levels
that maximize the overall expected quality.

This paper describes recent results and new direc-
tions aimed at generalizing the applicability of progres-
sive processing by addressing the issues of high dura-
tion uncertainty and quality uncertainty associated with
each computational unit. We also examine new ways
to model inter-task quality dependency and a richer
topology of task structures. The new directions build
on previous work by Mouaddib and Zilberstein [10;
11] on control of progressive processing. In [10], an in-
cremental, heuristic scheduler is described that addresses
the static version of the problem (a fixed set of PRUs).
In [11], an optimal monitoring policy (or schedule) is
computed by solving a corresponding Markov Decision
Process (MDP) that takes into account duration un-
certainty. A similar approach has been developed by
Hansen and Zilberstein [3] for control of interruptible
anytime algorithms. The extensions we propose here are
based on the MDP controller in [11]. These extensions
address quality uncertainty and dependency and a more
complex structure of tasks.

Our target application for the extended MDP sched-
uler is in the domain of intelligent information retrieval.
Over the past few years there has been a substantial
growth in the number of real-time information servers
(databanks) over the internet providing a wide range of
scientific, economic, and social services. The response to
an information request involves a local search process to
find relevant information, filtering the results to adapt
them to the user needs, and preparing the final response.
In an attempt to provide high-quality information, the
information providers may need to allocate a consider-
able amount of computational resources to each request.
The vast majority of today’s information providers are
using a static strategy in order to prepare the response
so that the user receives the same data regardless of the
load on the system and the cost of satisfying the request.
As a result, some requests must be rejected or ignored
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Therefore, the domain of real-time intelligent infor-
mation retrieval can benefit from a progressive process-
ing approach that addresses duration and quality uncer-
tainty and dynamic environments. Each type of informa-
tion request can be mapped into a progressive processing
unit in such a way that the lowest level of the PRU gen-
erates a response of minimal quality and each additional
level improves the quality of the result. For example, a
request for publications in a certain area defined by key-
words (e.g., anytime and progressive processing) can be
satisfied by a PRU with two levels: the first level (that
is mandatory) will search for information that includes
only title, authors’ names, and link to content, while the
second level will retrieve the abstract of each article and
the publication in which it appeared. Additional levels
can perform intelligent filtering to improve the precision
of the result.

The progressive processing approach offers several ob-
vious advantages since it allows the system to trade off
computational resources against the quality of the re-
sponse. When operating under high load, the system can
exhibit robustness and fairness, producing a response to
every request with a minimal quality. The system can
also maximize the return to the server if quality attached
to each level of processing represents monetary rewards.
The rest of this section defines the progressive processing
problem representation more formally.

The (dynamic) progressive processing task consists of
aset P ={P,..., P,} of individual problems (informa-
tion requests) such that:

e P is constructed dynamically: an old problem is
removed from the set when a response is sent, and a
new problem is added to the set when a new request
arrives,

e each problem P; has a deadline D; to respect,

e each problem P; could be solved at varying levels
through a progressive processing unit v based on a
hierarchy of processing levels {I},12,13 Ik}, and

w burburr

e each processing level L is characterized by the tu-
ple (C(L), ¢q(L)). C(L) is the model of duration
uncertainty. This model, in the MDP controller,
consists of a discrete distribution of the duration
of processing [11]. This distribution is represented
by a set of tuples {(A}I:p1)7 (A%LPQ): RN (Azlnpz)}:
where (A¥ | py) means the level L takes A¥ units
time with the probability pr. While this model rep-
resents the most likely duration ¢’ and the stan-
dard deviation v” in the incremental scheduling [10].
q(L) represents the quality improvement of the over-
all response when the level is executed.

The rest of this paper is organized as follows. Sec-
tions 2 and 3 describe the two existing approaches to
modeling and control of progressive processing. Section
4 describes the set of extensions that are the focus of cur-
rent research efforts. We conclude with a description of
the anticipated benefits of the extended MDP controller.
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2 Heuristic Scheduling

This section presents a heuristic approach to schedul-
ing a given set of progressive processing units. Con-
sider a set P of n problems. Let U/ be a set of n PRUs
{u1, ua,. .., u,} that solve the n problems. The PRUs
are sorted by the deadlines (earliest-deadline-first) of the
corresponding problems. The scheduling problem is to
find for each PRU the optimal subset of its levels such
that all deadlines are respected. This decision is made
under uncertainty regarding the execution time of each
processing level and regarding future changes of the set
U. Each processing level I] is assigned its most likely
duration CZ computed from gathered data of previous
executions and a utility U7 that is defined as follows:
Uij = V(qg ) — C’ost(cg ), where qf is the quality of the
solution at the level IZ.

2.1 Framework

We represent the ordered set U by a graph G (Figure
1) where each node is a level l; The successors of each

level I} are I’*! and I}, ; when they exist.

Enve\op@ @

Fringe «

Figure 1: Example showing the framework

This structure allows to perform utility-based schedul-
ing by incrementally inserting nodes (processing levels)
into the current schedule. We now define several con-
cepts necessary to describe the scheduling process.

e The envelop, &, is a subgraph of G containing all the
levels scheduled for execution (nodes drawn with bold
lines in Figure 1). This is similar to the notion of a
closed list in search algorithms. The envelop is a dy-
namic structure that can be revised during execution.

e The fringe, F, is the set of direct successors to the
nodes in £ (nodes drawn with dotted lines in Figure 1).
This is similar to the notion of an open list in search that
contains nodes on the frontier of the search tree that are
candidates for expansion.

e The frozen space, Z, is a set of branches pruned during
the scheduling cycle. It contains the levels that violate
some deadlines during the scheduling phase. We save
these levels because during the revision of the schedule,
these levels may be added to the search space and even-
tually they may be added to the schedule.

2.2 Incremental scheduling

The main design goal of the incremental scheduler is
the ability to return an approximate schedule for all the



PRUs at any time and to revise this schedule when a
deviation from the predetermined schedule is detected
at run-time. These two properties allow the system to
deal with domains characterized with rapid change and
a high level of uncertainty.

Conceptual description

With the PRU structure and formal framework described
above, scheduling could be seen as the problem of finding
an optimal path that visits the maximum number of lev-
els in the graph G without violating any deadline. There
are different possible paths with different qualities. Our
strategy consists of finding a minimal schedule that in-
cludes all the PRUs and refining it progressively. The
scheduler starts its processing by building the schedule
with the lowest quality (the minimal envelop) and re-
fining it by inserting additional nodes into the graph as
long as all the deadlines are respected. The incremental
processing of the scheduler is guided by the progressive
structure of the PRUs and by the (easy to construct)
fringe.

Utility-based scheduling algorithm

The construction of the schedule is based on a series
of cycles of expansion of the current envelop. This ex-
pansion consists of inserting levels of the fringe into the
envelop. This process is repeated until a maximal en-
velop is reached (i.e., any further expansion leads to a
violation of a deadline) or until an external even causes
the interruption of scheduling. At each cycle, a schedule
is available and its quality is improved from one cycle to
another. The algorithm consists of the following steps:
¢ Initialization step:

E=Z=0andF={LLe G|Vu € U} (1)

e Expansion step:
This step consists of extending £ to all the levels in F:

E=€EHFandF =0 (2)

The operator [ allows to insert levels while respecting
the structure of the graph G and thus at each cycle, £ is
a subgraph of G (as shown in Figure 1).

e Test of feasibility step:

The schedule fails when one deadline is violated:

i=dg

dy € U: Z Zcf; > D,, (3)
{6 € U, Ds < D,} i=1
where {L},...,.L¥}cC€

If the schedule fails, go to the approximation step, oth-
erwise go to the new cycle step.

e Approximation step:

The level with the lowest utility, noted L,;», when is
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discarded when the schedule fails. The level L,,;, is se-
lected among the levels Lf“y inserted by the last expansion
cycle.

Lpin = CWQ(MINL';(UL:)) (4)

The branch containing the successors nodes is pruned
from G and is placed in Z.

Afterwards, go to the test of feasibility step.
e New fringe step:
For each processing level Lf inserted in £ by the last
expansion cycle, we insert into the fringe its successor (if
it exists). Formally:

F = {Liif exists | L} € £} (5)

If the fringe is not empty go to the ezpansion step, oth-
erwise stop the algorithm and return the envelop £.

2.3 Performance and limitations

We have implemented and tested the incremental sched-
uler [10]. This approach seems to be more suitable than
design-to-time [2] and imprecise computation [7] in ap-
plications characterized by duration uncertainty. How-
ever, this approach has two important limitations. First,
the utility-directed greedy scheduling algorithm is a lo-
cal optimization approach to a scheduling problem that
is hard to optimize globally. In addition, this approach
is suitable for applications characterized by duration un-
certainty but its effectiveness diminishes under a high
level of uncertainty.

3 Optimal Monitoring Policies

The standard problem of scheduling and monitoring pro-
gressive processing can be viewed as a control problem
of a Markov Decision Process (MDP) [11]. The states
of the MDP represent the current state of the compu-
tation in terms of the unit/level being executed and the
time. The rewards associate with a state are simply
the rewards for executing each level or a unit. The two
possible actions are to execute the next level of the cur-
rent unit or to move to the next processing unit. The
transition model is defined by the duration uncertainty
associated with the level selected for execution. This
section gives a formal definition of the resulting MDP,
describes an algorithm for constructing an optimal pol-
icy for action selection, and summaries the performance
and limitations of this approach.

3.1 State representation

Let U be a set of PRUs {uy,us,...u,} and lf is the j-
th processing level of unit u;. Each unit u; in the set
U has a deadline D; for finishing its processing. The
units in U are sorted by their deadlines. A is a random
variable representing the duration of processing level lf .
We model the execution of the entire set of units as a
stochastic automaton with a finite set of world states
S = {[t},t]ju; € U} where 0 < j < MazLevel(u;) and



t > 0 represents the remaining time to the deadline of
u;. When the system is in state [I7,t], the j-th level
of unit u; has been executed (since the first level is 1,
7 = 0 is used to indicate the fact that no level has been
executed).

3.2 Transition model

The initial state of the MDP is [I9, D; — T where T is
the current time. This state indicates that the system is
ready to start executing the first level of the first unit.
The terminal states are all the states of the form: [IZ 0]
or [I™,t] where m is the last level of the last unit n.
The former set includes states that reach the deadline
of the last unit and the latter set includes states that
complete the execution of the last unit (possibly before
the deadline).

In every nonterminal states there are two possible ac-
tions: E (execute) and M (move). The E action contin-
ues the execution of the next level of the current PRU
and the M action moves to the initial state of the next
PRU. Note that by limiting the actions to this set we
exclude the possibility of executing levels of previous
PRUs, even if the deadlines allow such actions. In other
words, we make the monotonicity assumption that exe-
cution is performed PRU by PRU in the order of their
deadlines. This assumption is reasonable for applications
characterized by high time pressure and rapid change
such as the information retrieval problem. In such appli-
cations, it is desirable to report the best result generated
for a particular request as soon as the system completes
its work on the request.

The transition model is a function that maps each el-
ement of S x {E, M} into a discrete probability dis-
tribution over S. Equations 6-8 define the transition
probabilities for a given nonterminal state [I],t]:

The M action is deterministic. It moves the MDP to
the next processing unit and updates the remaining time
to the deadline of the new unit.

Pr([l?-i-l’DH‘l - Di+ t] | [lg7t]7M) =1 (6)

The E action is probabilistic. Duration uncertainty
defines the new state. Equation 2 determines the transi-
tions following successful execution and Equation 3 de-
termines the transition to the next PRU when the dead-
line of the current PRU is reached.

Pr(lI™ ¢ — 8] | [l2,1),E) = Pr(AJ™" =§) when § <t
(7)
Pr([13y1, Diy1 = Di] | [, 1], E) = Pr(AT™ > 1) (8)

3.3 Rewards and the value function

Rewards are associated with each state based on the
quality gain by executing the most recent level. Recall
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that each level of a unit has a predetermined quality.
Therefore,

R([19,#) =0 9)

R(, 1)) = a(1}) (10)

Now, we can define the value function (expected
reward-to-go) for nonterminal states of the MDP as fol-
lows [12]:

V(s) = R(s) + max P(s'|s,a)V (s") (11)

Using our former notation we get V([IZ,]) =

V([l?ﬂ: Di+1 -D;+ t]
R([?,t]) + max j
(1) Pr(AIY > OV (I2), Dis — D)+
Z55t PT(Agﬂ = 5)V([lf+17 t—4])
(12)
The top expression is the value of a move action and
the bottom line is the expected value of an execute ac-
tion. Note that in states of the form [l , ¢] it is not possi-
ble to execute a move action to the next unit and hence
their value function is simply the result of attempting to
execute the next level.
Finally, we need to define the value function for ter-
minal states:

V({Iz'st]) = R([L', 1)) (13)

and
V([13,0]) = R([,,0]) (14)

3.4 Optimal schedule

The above MDP is a case of a finite-horizon MDP with
no loops. This is due to the fact that every transition
moves “forward” in the state space by always increment-
ing the unit/level number. This class of MDPs can be
solved easily for relatively large state spaces because the
value function can be calculated in one sweep of the state
space (backwards, starting with terminal states). In ad-
dition, substantial computational savings result from the
fact that each processing unit has its own deadline and
because many states of the MDP are not reachable by
an optimal policy.

Theorem 1 Given a monotonic progressive processing
problem P, the optimal policy for the corresponding MDP
is an optimal schedule for P.

We have implemented a recursive algorithm that com-
putes the value function and the optimal policy. Figure 2
shows a simple example of a set of two PRUs and the
resulting policy. The states of the policy are denoted
by circles on grids (one grid per PRU) with horizontal
axis showing the remaining time to the deadline of the
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Figure 2: An optimal monitoring policy with 2 PRUs.

PRU and vertical axis showing the level and its value.
Each state includes the best action (E or M) and the ex-
pected utility (reward-to-go). Outgoing arrows show the
transitions with small circles showing the probability of
each transition. The duration is implicit in the graph (by
counting the number of time steps for each transition).
The dashed lines indicate termination of execution of a
PRU. Transitions marked with an F represent failure of
an execute action (e.g. duration exceeds the deadline) in
which case execution of the level is aborted and control
is moved to the next PRU. The initial state is the bot-
tom left state with an expected utility of 8.0. Note that
the utility of each state is calculated using Equation 12.

3.5 Performance and limitations

We have implemented and tested the MDP approach to
constructing optimal monitoring policies for progressive
processing tasks [11]. Not surprisingly, this approach of-
fers a major performance improvement over the heuristic
scheduling approach. We also found that constructing
the schedule is feasible for large task structures. As a
result, we adopt this framework as a foundation for the
future directions outlined in the next section. However,
the approach suffers from several disadvantages in its
current form: (1) The output quality of each processing
unit is static and is defined as part of the task structure;
(2) The task structure itself is linear; and (3) there is
no dependency of output quality of a level of a PRU on

previous levels of the same PRU or on other PRUs. The
next section describes extensions of the progressive pro-
cessing model that overcome these limitations and how
an optimal monitoring policy can be constructed for the
new model.

4 New Directions

We are currently extending the MDP approach to ad-
dress a more general type of progressive processing task
structures. This section describes the key issues ad-
dressed by the new model and our approach to handling
them.

4.1 Handling quality uncertainty

The standard model of progressive processing assumes
that the output quality of each processing unit is static
and is defined as part of the task structure. This enabled
us to have a simple reward structure by which executing
a processing unit results in a fixed, predefined increase in
the overall utility. A more flexible model must address
quality uncertainty and allow us to represent a possible
distribution of output quality for each processing unit.

This extension can be handled by replacing the current
set of state transitions that include only duration uncer-
tainty with a set of transitions that include both duration
and quality uncertainty. In order to be able to associate
a fixed reward with each MDP state, the state must also
include the actual quality produced by the most recent
level. The new state representation is: s = (I%,¢%,1),
where q;: is the output quality of the most recent level.
This is a relatively simple modification which will in-
crease the size of the MDP by a constant factor.

4.2 Handling quality dependency

The standard model assumes that the output quality of
each level is independent of previously executed levels.
There are two useful ways to relax this assumption. One
generalization allows the output quality of each level to
depend on the output quality of the previous level of the
same PRU. If we adopt the enhanced state representa-
tion mentioned above, we will have the output quality
of the most recently executed level readily available. All
we need to define the new transitions is the conditional
probability distribution of output quality. This infor-
mation can be part of the new task structure definition.
While this extension models only a simple form of quality
dependency, it will allow us to represent useful depen-
dencies that arise in the information retrieval domain.
For example, it will allow us to model the fact that when
an initial search for relevant publications produces lower
quality (less relevant publications) it is more likely that
the outcome of a complex filtering applied to the results
will be of lower quality.

Another, more general, form of quality dependency
would allow the output quality of each level to depend
on the output qualities of a set of other levels (consid-
ered its parents) that may belong to the same PRU or



different PRUs. If we limit inter-task dependency to the
first level of each PRU being dependent on the last level
of the previous PRU, then the solution proposed above
is sufficient. However, in general, this extension is sub-
stantially more complicated to implement both in terms
of the specifications of the task structure and in terms
of the size and complexity of the resulting MDP. It also
implies a deviation from the linear hierarchical structure
of the standard model. Additional task structure modi-
fications are discussed below.

4.3 Enhanced task structures

The standard model requires for all tasks to be sequen-
tial and all PRUs to have a linear hierarchy of levels.
This simple task structure can be enhanced in several
useful ways. First, each PRU can be generalized to in-
clude a set of levels and precedence constraints imposed
on the levels. Each level can increase the overall quality
as long as it is executed in an order that satisfies those
constraints. A similar assumption can be made about
the overall set of tasks to be executed. We are currently
studying a variety of task structures that are both use-
ful (in terms of modeling practical applications) and ef-
ficient (in terms of our ability to compute the optimal
monitoring policy).

Another aspect of the task structure that can be gen-
eralized is the form of time-dependent utility function
that we use. The standard model impose strict dead-
lines on each task and assumes that the comprehensive
utility is the sum of qualities produced by all executed
levels. We are currently examining more general time-
dependent utility functions that would allow us to model
situation in which no strict deadlines are imposed on
each task and the overall utility is time-dependent.

5 Conclusion

We have examined existing work and future directions
in modeling and control of progressive processing. Re-
cent results show that heuristic scheduling can be per-
formed efficiently, but is produces sub-optimal schedules
and cannot handle well high levels of duration uncer-
tainty. An alternative MDP controller provides an op-
timal schedule at a reasonable computational cost. The
latter technique offers a major improvement under du-
ration uncertainty and we adopt it as the foundation of
current work. To generalize the applicability of progres-
sive processing, we extend the current MDP controller
to deal with, in addition to duration uncertainty, qual-
ity uncertainty and inter-task quality dependency. These
enhancements of the basic model appear to require mod-
est modification to the problem representation that will
only increase its complexity by a constant factor. Fi-
nally, we address the problem of extending the topology
of tasks beyond the current linear hierarchy. The lat-
ter extension is a more radical change that remains the
focus of future work.
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