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Abstract

Researchers have introduced the Dynamic Distributed Con-
straint Optimization Problem (Dynamic DCOP) formula-
tion to model dynamically changing multi-agent coordination
problems, where a dynamic DCOP is a sequence of (static
canonical) DCOPs, each partially different from the DCOP
preceding it. Existing work typically assumes that the prob-
lem in each time step is decoupled from the problems in
other time steps, which might not hold in some applications.
Therefore, in this paper, we make the following contributions:
(i) We introduce a new model, called Markovian Dynamic
DCOPs (MD-DCOPs), where the DCOP in the next time step
is a function of the value assignments in the current time step;
(ii) We introduce two distributed reinforcement learning algo-
rithms, the Distributed RVI Q-learning algorithm and the Dis-
tributed R-learning algorithm, that balance exploration and
exploitation to solve MD-DCOPs in an online manner; and
(iii) We empirically evaluate them against an existing multi-
arm bandit DCOP algorithm on dynamic DCOPs.

Introduction
Distributed Constraint Optimization Problems (DCOPs) are
problems where agents need to coordinate their value as-
signments to maximize the sum of the resulting constraint
utilities (Modi et al. 2005; Petcu and Faltings 2005a;
Yeoh and Yokoo 2012). They are well-suited for model-
ing multi-agent coordination problems where the primary
interactions are between local subsets of agents, such as
the distributed scheduling of meetings (Maheswaran et al.
2004), the distributed allocation of targets to sensors in a
network (Farinelli et al. 2008), the distributed allocation
of resources in disaster evacuation scenarios (Lass et al.
2008), and the distributed coordination of logistics opera-
tions (Léauté and Faltings 2011a).

Unfortunately, DCOPs only model static problems or, in
other words, problems that do not change over time. In the
above-mentioned coordination problems, various events that
change the problem can occur. As a result, researchers have
extended DCOPs to Dynamic DCOPs, where the problem
can change over time (Petcu and Faltings 2005b; 2007; Lass,
Sultanik, and Regli 2008; Sultanik, Lass, and Regli 2009;
Zivan, Glinton, and Sycara 2009). Researchers have thus far
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taken an online approach by modeling it as a sequence of
(canonical) DCOPs, each partially different from the DCOP
preceding it, and solving it by searching for a new solution
each time the problem changes. However, existing work typ-
ically assumes that the problem in each time step is decou-
pled from the problems in other time steps, which might not
hold in some applications.

Therefore, in this paper, we introduce a new model,
called Markovian Dynamic DCOPs (MD-DCOPs), where
the DCOP in the next time step is a function of the value as-
signments in the current time step. Similar to existing work
on dynamic DCOPs, we assume that the agents in MD-
DCOPs are not aware of the underlying transition functions
and, thus, need to solve the problem in an online manner.
Specifically, we introduce two reinforcement learning al-
gorithms, the distributed RVI Q-learning algorithm and the
distributed R-learning algorithm, that use a multi-arm ban-
dit strategy to balance exploration (learning the underlying
transition functions) and exploitation (taking the currently
believed optimal joint action). We empirically evaluate them
against an existing multi-arm bandit DCOP algorithm on dy-
namic DCOPs.

Background: DCOPs
A distributed constraint optimization problem
(DCOP) (Modi et al. 2005; Petcu and Faltings 2005a;
Yeoh and Yokoo 2012) is defined by 〈X ,D,F ,A, α〉, where
X = {x1, . . . , xn} is a set of variables;D = {D1, . . . , Dn}
is a set of finite domains, whereDi is the domain of variable
xi; F = {f1, . . . , fm} is a set of binary reward functions
(also called constraints), where each reward function
fi : Di1 × Di2 7→ N ∪ {−∞, 0} specifies the reward of
each combination of values of variables xi1 and xi2 that
are in the function’s scope; A = {a1, . . . , ap} is a set of
agents and α : X → A maps each variable to one agent.
Although the general DCOP definition allows one agent
to own multiple variables as well as the existence of k-ary
constraints, we restrict our definition here in the interest of
clarity. We will thus use the terms “agent” and “variable”
interchangeably. A solution is a value assignment for a
subset of variables. Its reward is the evaluation of all reward
functions on that solution. A solution is complete iff it is
a value assignment for all variables. The goal is to find a
reward-maximal complete solution.
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Figure 1: Sensor Network Example

Motivating Domain
We motivate our work by a sensor network application,
where a group of sensors need to coordinate to track tar-
gets in a grid. Figure 1 illustrates this problem, where there
are three sensors a1, a2, and a3, and two targets t1 and t2.
The possible locations of target t1 are denoted by “X’s” and
the possible locations of target t2 are denoted by filled cir-
cles. The possible areas that sensor a1 can scan are denoted
by dotted circles in Figure 1(a), and the possible areas that
sensors a2 and a3 can scan are denoted by dotted circles in
Figure 1(b). Therefore, sensor a2 can only track target t1,
sensor a3 can only track target t2, and sensor a1 can track
both targets.

Each target has an associated reward if it is found by any
one sensor and a larger reward if it is found by two sensors.
The reward is also location dependent – it is larger in loca-
tions of higher importance. The sensors need to coordinate
with one another to decide which areas they would each like
to scan at each time step for an infinite horizon. Addition-
ally, the targets can observe the areas scanned by the sensors
in the current time step, which will influence its choice of
location to move to in the next time step. The sensors do not
know how the targets decide to move.

If the sensors need to coordinate for a single time step
only, and there is no uncertainty in the target movements,
then one can represent this problem as a (canonical) DCOP,
where the sensors are agents, the areas that a sensor can scan
are its domain values, and the coordination between sensors
to track each target is represented as a constraint.

Markovian Dynamic DCOPs
We now introduce the Markovian Dynamic DCOP (MD-
DCOP) model. At a high level, an MD-DCOP can be visual-
ized as a sequence of (canonical) DCOPs with one (canoni-
cal) DCOP at each time step. The variables X , domains D,
agents A, and ownership mapping α of the initial DCOP re-
mains unchanged across all time steps, but the reward func-
tions F can change and is a function of the global joint state
s at the current time step. The problem transitions from one
global joint state to another in the next time step according
to a pre-defined joint transition probability function, which
is a function of the values of the agents in the current time
step. In this paper, we assume that the agents do not know
this underlying joint transition probability function.

In more detail, an MD-DCOP is defined by a tuple
〈S,D,P,F〉, where
S is the finite set of global joint states. S = ×1≤i≤m Si,

where Si is the set of local states of reward function
fi ∈ F . Each global joint state s ∈ S is defined by
〈s1, . . . , sm〉, where si ∈ Si.

D is the finite set of global joint values. D = ×1≤i≤nDi,
where Di ∈ D is the set of local values of vari-
able xi. Each global joint value d ∈ D is defined by
〈d1, . . . , dn〉, where di ∈ Di. We also use the notations
Di = 〈di1 , di2〉, where di1 ∈ Di1 and di2 ∈ Di2 , to
denote the set of local joint values of variables xi1 and
xi2 that are in the scope of reward function fi ∈ F and
di ∈ Di to denote an element of this set.

P is the finite set of joint transition probability func-
tions that assume conditional transition independence.
P = ×s,s′∈S,d∈D P (s′ | s,d), where P (s′ | s,d) =
Π1≤i≤m Pi(s

′
i | si,di) is the probability of transitioning

to joint state s′ after taking joint value di in joint state s.
In this paper, we assume that the underlying joint tran-
sition probably functions are not known to the agents a
priori.

F is the finite set of joint reward functions. F(s,d) =∑
1≤i≤m fi(si,di), where fi(si,di) is the reward of

taking joint value di in joint state si.
This model bears a lot of similarities with factored
Markov decision processes (MDPs) (Boutilier, Dearden,
and Goldszmidt 2000; Guestrin et al. 2003), multi-agent
MDPs (Boutilier 1999) and decentralized MDPs (Bernstein
et al. 2002), which we discuss in detail in the Related Work
section.

In our sensor network example, if constraint fi represents
the coordination between sensors s1 and s2 to track target t1,
then each state si represents the possible locations of target
t1; each value di represents a pair of areas that the agents
s1 and s2 can scan; the probability function Pi(s′i | si,di)
represents the movement strategy of target t1; and the re-
ward function fi(si,di) denotes the joint reward of sensors
in those zones if they took joint movement di in state si.

A solution to an MD-DCOP is a global joint policy Π :
S 7→ D that maps each global joint state s ∈ S to a global
joint value d ∈ D. The objective of an MD-DCOP is for
the agents to assign a sequence of values to their variables
(to learn the underlying transition probability function and
explore the state space) and converge on a global joint policy
that together maximizes the expected average reward:

Definition 1 The expected average reward of an MD-
DCOP policy Π found using exploration strategy Φ is

lim
T→∞

1

T
E

[
T−1∑
t=0

m∑
i=1

fi(si,d
t
i)

]
(1)

where dti is the local joint value for local state si at time step
t. Let t∗ be the time step in which all the agents converged
on the global joint policy Π. Then, dti is the local joint value
defined by the exploration strategy Φ for 0 ≤ t < t∗, and it
is the local joint value given by the global joint policy Π for
the global joint state s for t∗ ≤ t.



Distributed RVI Q-Learning
Since the underlying transition probability functions of MD-
DCOPs are not known to the agents a priori, there is a clear
need for algorithms that trade off exploration vs. exploita-
tion. In this paper, we explore reinforcement learning meth-
ods to solve this problem. Specifically, we extend the (cen-
tralized) RVI Q-learning and (centralized) R-learning algo-
rithms to solve MD-DCOPs in a distributed way.

(Centralized) RVI Q-Learning
The Relative Value Iteration (RVI) Q-learning algo-
rithm (Abounadi, Bertsekas, and Borkar 2001) was devel-
oped to solve average-reward single-agent Markov deci-
sion processes (MDPs), but it can be tailored to solve MD-
DCOPs in a centralized fashion. It is one of the more popular
learning algorithms as it does not make any assumptions on
the underlying model of the problem and its convergence is
guaranteed for any arbitrary exploration strategy (Abounadi,
Bertsekas, and Borkar 2001). We now describe its operations
using the notations defined above.
Step 1: Let time step t = 0. Initialize (say to 0) the Q values

Qt(̂s, d̂) for all global joint states ŝ ∈ S and global joint
values d̂ ∈ D.

Step 2: Let the current global joint state be s. Choose the
global joint value d based on some exploration strategy
or converged policy. Let the immediate joint reward of
choosing this value in this state be F(s,d), and let the
next resulting global joint state be s′.

Step 3: Update the Q values using the following rule:

Qt+1(s,d) = Qt(s,d) + γ(t)
[
F(s,d) + max

d′∈D
Qt(s′,d′)

−Qt(s,d)−Qt(s0,d0)
]

(2)

where γ(t) is a diminishing step-size schedule of
stochastic approximation satisfying

∞∑
t=1

γ(t) =∞ and
∞∑
t=1

γ(t)2 <∞ (3)

and (s0,d0) is the initial state and value pair.
Step 4: Repeat Steps 2 and 3 until convergence.

Algorithm Description
While the (centralized) RVI Q-learning algorithm has been
shown to be a general and powerful technique to solve
average-reward (centralized) Markov decision processes
(MDPs), there is no work done on how to adapt it to solve
a decentralized constraint-based version of infinite-horizon
average-reward MDPs, otherwise known as MD-DCOPs, in
a distributed manner. We now describe how to do so.

We first show how the update rules in Step 3 of the (cen-
tralized) Q-learning algorithm can be done in a distributed
manner. Observe that each global Q value can be decom-
posed into local Q values:

Qt(s,d)←
m∑
i=1

Qti(s,di) (4)

where each local Q valueQti(s,di) is associated with reward
function fi. Then, Equation 2 can be decomposed into the
following for each reward function fi:1

Qt+1
i (s,di) = Qti(s,di) + γ(t)

[
fi(si,di)

+Qti(s
′,d′i |d′i ∈ argmax

d′∈D
Qt(s′,d′))

−Qti(s,di)−Qti(s0,d0
i )
]

(5)

The diminishing schedule γ(t) is the same as the schedule
in the centralized version.

There are two obstacles that prevent this equation from
being updated in a completely distributed fashion. The first
obstacle is that the local Q-value functions are functions of
the global joint states, and each agent is only aware of the
local state of each of its constraints. In our algorithm, be-
fore updating the local Q values, we require each agent to
broadcast the local state of each of its constraints to all other
agents. As a result, each agent can construct the global joint
state.

The second obstacle is that there is one term for which
a global optimization method is required. It is the term for
which an argmax over the entire set of global joint values
D is required:

d′i ∈ argmax
d′∈D

Qt(s′,d′) (6)

To solve this term in a distributed manner, we map the
problem into a canonical DCOP, where the utilities in the
DCOP equal the local Q values, and solve it using any off-
the-shelf DCOP solvers. For example, in order to identify
the local joint values d′i in Equation 6, we set the reward
fi(di) = Qti(s

′,di) of the canonical DCOP to equal the
local Q value. Then, once the agents solve this canonical
DCOP, the agents can update their Q values according to
Equation 5 in a distributed fashion. In our experiments, we
use DPOP (Petcu and Faltings 2005a) to solve this canonical
DCOP.

One can view the operation of broadcasting the local
states as similar to broadcasting the full DCOP structure
to all agents. As a result, this operation will likely result in
the loss of privacy, which can be a concern in some multi-
agent applications (Greenstadt, Pearce, and Tambe 2006;
Greenstadt, Grosz, and Smith 2007). However, we believe
that our approach is very suitable for problems, such as our
sensor network example, where all the agents are indeed
completely cooperative and have no privacy concerns.

Since each Q value Qti(s,di) is associated with two
agents, specifically the agents that are in the scope of the
reward function fi, there needs to be an agreement on which
agent should maintain and update these values. We let the
lower priority agent (the child or the pseudo-child in the con-
straint tree) maintain these values.

While this distributed RVI Q-learning algorithm can con-
verge with any arbitrary exploration strategy, we describe a
multi-arm bandit strategy. For each time step t, the agents
choose their values that together maximizes the sum of the
utilities over all constraints, whereby the reward of a local

1With a slight abuse of notations, we use the symbol “∈” to
mean an element of a vector instead of an element of a set.



joint value d′i ∈ Di for the current joint state s for reward
function fi ∈ F is defined by:

fi(d
′
i) = Qti(s,d

′
i) +

√
2 ln t

|Di|
nt(d′i)

(7)

where nt(d′i) is the number of times the joint value d′i has
been chosen in the previous time steps. The problem then
corresponds to finding the new value di according to:

di ∈ argmax
d′∈D

m∑
i=1

fi(d
′
i |d′i ∈ d′) (8)

In order to solve this problem, we can again map this prob-
lem into a canonical DCOP, where the utilities in the DCOP
are defined in Equation 7, and solve it in a distributed way.
The agents continue to use this exploration strategy until
convergence, after which, they use the converged strategy.

Theoretical Properties
In this paper, we consider MDPs where a joint state can
transition to any other joint state with non-zero probabil-
ity, that is, the MDP is unichain. We are going to show the
decomposability of the value function of a unichain MDP,
thereby leading us to the property that the Distributed RVI
Q-learning algorithm converges to an optimal solution. The
detailed proofs for the lemma and theorems below are in the
supplemental attachment.

It is known that there always exists an optimal solution for
a given unichain MDP and this solution can be characterized
by the V ∗(s) value:
Theorem 1 (Puterman 2005) There exists an optimal Q-
value Q∗(s,d) for each joint state s and joint action a in an
average-reward unichain MDP with bounded reward func-
tion satisfying:

Q∗(s,d) + ρ∗ = F(s,d) +
∑
s′

P (s′, s,d) max
d′∈D

Q∗(s′,d′)

(9)

Additionally, there exists a unique V-value V ∗(s) =
maxd∈DQ∗(s,d) for each joint state s such that

V ∗(s) + ρ∗ = max
d∈D

[F(s,d) +
∑
s′

P (s′, s,d)V ∗(s′)] (10)

with V ∗(s0) = 0 for any initial state s0.

To help us prove the decomposability of the value func-
tion, we first show the decomposibility of average reward ρ∗
of a given optimal policy.

Lemma 1 For a given unichain MDP, the optimal average
reward ρ∗ =

∑m
i=1 ρ

∗
i can be decomposed into a sum of

local average rewards ρ∗i for each reward function fi ∈ F .

Proof Sketch: For a given unichain MDP, there always ex-
ists a stationary distribution Pπ(s) of the global joint state
s ∈ S in the limit, where π is the converged global joint
policy. Hence, we have the existence of

ρπi =
∑
s∈S

Pπ(s)fi(si,di |si ∈ s,di = π(s))

for each reward function fi ∈ F .

From the decomposability of average reward given by
Lemma 1 and the characteristic of V ∗ value given in Theo-
rem 1, we now prove the decomposability of V ∗ as follows:

Definition 2 P̄i(s
′, s,di) is the probability of transitioning

to joint state s′ from joint state s given joint value di and
other values following policy Φ with V ∗j (s0j ) = 0 for each
reward function fj ∈ F .

Theorem 2 There exists V ∗i (s) = Q∗i
(
s,di | di ∈

argmaxd∈DQ∗(s,d)
)

and ρi for each reward function
fi ∈ F under an optimal policy Φ(s) = di ∈
argmaxd∈DQ∗(s,d) such that

V ∗i (s) + ρ∗i = fi(si,di |si ∈ s,di ∈ argmax
d∈D

Q∗(s,d))

+
∑
s′

P̄i(s
′, s,di |di ∈ argmax

d∈D
Q∗(s,d))V ∗i (s′) (11)

and V ∗(s) =
∑
i V
∗
i (s).

Proof Sketch: We do not show how to decompose Q∗(s,d)
into Q∗i (s,di) but only show that there exists such a decom-
position. The proof is based on the uniqueness of an opti-
mal solution for any unichain MDP, which is given by The-
orem 1.

Step 1: We first propose a modified MD-DCOP and decom-
pose it into a set of subproblems, where each subproblem
is an MD-DCOP with the transition probabilities identical
with the original MD-DCOP, but the reward functions for
each joint state s and joint value di are defined as follows:

f̄i(s,di) =

{
fi(si,di |si ∈ s) if di ∈ argmaxd∈DQ∗(s,d)

−C otherwise
(12)

where C is a very large constant.

Step 2: We now show the existence of the decomposed Q-
values Q̄∗i (s,di) for each reward function fi. First, set the
policy of every other variable that is not in the subproblem
defined by reward function fi to their respective optimal pol-
icy in the original MD-DCOP. Also set the transition proba-
bilities P̄i(s′, s,di) according to the premise of Theorem 2
and set the reward functions f̄i(s,di) according to Equa-
tion 12.

According to Theorem 1, there exists a decomposed Q-
value Q̄∗i for this subproblem such that

Q̄∗i (s,di) + ρ∗i = f̄i(s,di)

+
∑
s′

P̄i(s
′, s,di) Q̄

∗
i

(
s′,d′i |d′i ∈ argmax

d′∈D
Q∗(s′,d′)

)
(13)

where ρ∗i corresponds to the local average reward of the sub-
problem, as shown in Lemma 1.

Step 3: Next, we show that the global optimal Q-values
(sum of the decomposed optimal Q-values) of the modi-
fied MD-DCOP is the same as the global optimal Q-values
of the original MD-DCOP. For the globally optimal joint
value d∗ = argmaxd∈DQ∗(s,d), let d∗i to denote the



local joint value in d∗, Q̄∗(s,d∗) =
∑
i Q̄
∗
i (s,d

∗
i ), and

F̄(s,d∗) =
∑
i f̄i(s,d

∗
i ). Summing over all subproblems,

we get

Q̄∗(s,d∗) + ρ∗

=
∑
i

[
Q̄∗i (s,d

∗
i ) + ρ∗i

]
=
∑
i

[
f̄i(s,d

∗
i )

+
∑
s′

P̄i(s
′, s,d∗i ) Q̄

∗
i

(
s′,d′i |d′i ∈ argmax

d′∈D
Q∗(s′,d′)

)]
=
∑
i

f̄i(s,d
∗
i )

+
∑
i,s′

[
P̄i(s

′, s,d∗i ) Q̄
∗
i

(
s′,d′i |d′i ∈ argmax

d′∈D
Q∗(s′,d′)

)]
= F̄(s,d∗)

+
∑
s′

[
P (s′, s,d∗)

∑
i

Q̄∗i
(
s′,d′i |d′i ∈ argmax

d′∈D
Q∗(s′,d′)

)]
= F̄(s,d∗) +

∑
s′

[
P (s′, s,d∗) max

d′∈D
Q̄∗(s′,d′)

]
(14)

This equation is in the form of Equation 9, which charac-
terizes Q̄∗(s,d∗) as a solution to the modified problem. Ad-
ditionally, one can also show that the Q-value Q∗(s,d∗) of
the original problem is also a solution to the modified prob-
lem using the same process as in Equation 14. Since V ∗(s)
is unique according to Theorem 1, it must be the case that
V ∗(s) = Q∗(s,d∗) = Q̄∗(s,d∗).

Step 4: Finally, we show how to decompose the global op-
timally Q-values, which concludes the proof. We define the
decomposed Q- and V-values for d∗i as follows:

Q∗i (s,d
∗
i ) + ρ∗i = fi(si,d

∗
i )

+
∑
s′

P̄i(s
′, s,d∗i ) Q̄

∗
i (s
′,d′i |d′i ∈ argmax

d′∈D
Q∗(s′,d′))

(15)

V ∗i (s) = Q∗i (s,d
∗
i ) (16)

We now show that Q∗i (s,d
∗
i ) = Q̄∗i (s,d

∗
i ):

Q∗i (s,d
∗
i ) = fi(si,d

∗
i )− ρ∗i

+
∑
s′

P̄i(s
′, s,d∗i ) Q̄

∗
i (s
′,d′i |d′i ∈ argmax

d′∈D
Q∗(s′,d′))

= f̄i(si,d
∗
i )− ρ∗i

+
∑
s′

P̄i(s
′, s,d∗i ) Q̄

∗
i (s
′,d′i |d′i ∈ argmax

d′∈D
Q∗(s′,d′))

= Q̄∗i (s,d
∗
i ) (17)

Therefore,

V ∗i (s) + ρ∗i

= Q∗i (s,d
∗
i )+ρ∗i

= fi(si,d
∗
i )+

∑
s′

P̄i(s
′, s,d∗i ) Q̄

∗
i (s
′,d′i |d′i∈argmax

d′∈D
Q∗(s′,d′))

= fi(si,d
∗
i )+

∑
s′

P̄i(s
′, s,d∗i )Q

∗
i (s
′,d′i |d′i∈argmax

d′∈D
Q∗(s′,d′))

= fi(si,d
∗
i )+

∑
s′

P̄i(s
′, s,d∗i )V

∗
i (s′) (18)

Finally, we now show that the V-value V ∗(s) is a sum of its
decomposed components V ∗i (s,d∗i ):

V ∗(s) = Q̄∗(s,d∗)

=
∑
i

Q̄∗i (s,d
∗
i )

=
∑
i

Q∗i (s,d
∗
i )

=
∑
i

V ∗i (s,d∗i ) (19)

which concludes the proof.

As a result of the existence of the local value V ∗i (s) and
the non-expansive property of the Q update, we can derive
the convergence proof of our distributed RVI Q-learning al-
gorithm:

Theorem 3 The Distributed RVI Q-learning algorithm con-
verges to an optimal solution.

Proof Sketch: Let d denote the global joint value taken by
all the variables in the current iteration, and di denote the lo-
cal joint value taken by variables in the scope of reward func-
tion fi. Additionally, let s denote the current global state,
and s′ denote the next global state as a result of taking the
joint value d.

Now, let Hi be the mapping defined by

(HiQi)(s,di) = fi(s,di)

+
∑
s′i

P̄i(s
′, s,di)Q(s′,d′i |d′i ∈ argmax

d′∈D
Q(s′,d′))− ρi

= fi(s,di) +
∑
s′i

P̄i(s
′, s,di)V (s′)− ρi

with V (s′) = Q(s′,d′i |d′i ∈ argmaxd′∈DQ(s′,d′)). Since
Hi is non-expansive, that is,

‖HiQi −HiQ′i‖∞ ≤ ‖Qi −Q′i‖∞
and the corresponding ODE of HiQi

Q̇i(t) = Hi(Qi(t))−Q(t)

has at least one solution according to Theorem 2, Qi
thus converges to the optimal value Q∗i using the result
by Abounadi, Bertsekas, and Borkar (2001).

Distributed R-Learning
We now describe how to extend the (centralized) R-learning
algorithm to solve MD-DCOPs in a distributed way.

(Centralized) R-Learning
One of the limitations of the (centralized) RVI Q-learning
algorithm is that it rate of convergence can be slow in prac-
tice. As a result, researchers developed the R-learning algo-
rithm (Schwartz 1993; Mahadevan 1996), which can be seen
as a variant of the Q-learning algorithm. Unfortunately, the
convergence of this algorithm has not been proven to the best



of our knowledge. Nonetheless, it has been shown to work
well in practice.

The operations of the R-learning algorithm are very sim-
ilar to that of the RVI Q-learning algorithm, except that it
maintains R values Rt(s,d) and average utilities ρt instead
of Q values Qt(s,d) for each time step t. These values are
updated using the following rules:

Rt+1(s,d)←Rt(s,d)(1− β) + β
[
F(s,d)− ρt

+ max
d′∈D

Rt(s′,d′)
]

(20)

ρt+1 ← ρt(1− α) + α
[
F(s,d)

+ max
d′∈D

Rt(s′,d′)− max
d′∈D

Rt(s,d′)
]

(21)

where 0 ≤ β ≤ 1 is the learning rate for updating the R
values and 0 ≤ α ≤ 1 is the learning rate for updating the
average reward ρ.

Algorithm Description
Like the global Q values, each global R value and average
reward can be decomposed into local R values and local util-
ities:

Rt(s,d)←
m∑
i=1

Rti(si,di) ρt ←
m∑
i=1

ρti (22)

where local R value Rti(si,di) and local average reward ρit
are associated with reward function fi. Then, Equations 20
and 21 can be decomposed into the following for each re-
ward function fi:

Rt+1
i (si,di)←Rti(si,di)(1− β) + β

[
fi(si,di)− ρti

+Rti(s
′
i,d
′
i |d′i ∈ argmax

d′∈D
Rt(s′,d′))

]
(23)

ρt+1
i ← ρti(1− α) + α

[
fi(si,di)

+Rti(s
′
i,d
′
i |d′i ∈ argmax

d′∈D
Rt(s′,d′))

−Rti(si,d′i |d′i ∈ argmax
d′∈D

Rt(s,d′))
]

(24)

The learning rates 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 are the same
as the learning rates in the centralized version.

One of the differences here is that, unlike local Q value
functions, the local R value and average reward functions
are functions of local states si instead of global joint states.
Therefore, there is no need for agents to broadcast the lo-
cal states of their constraints to the other agents in the dis-
tributed R-learning algorithm. However, there are now two
terms for which a global optimization method is required.
They are:

d′i ∈ argmax
d′∈D

Rt(s,d′) d′i ∈ argmax
d′∈D

Rt(s′,d′) (25)

Similar to distributed Q-learning, we can solve for each of
these terms in a distributed manner by mapping the prob-
lems into canonical DCOPs. Once the agents solve the two
canonical DCOPs that correspond to solving Equation 25,
they can update their R values and average utilities accord-
ing to Equations 23 and 24 in a distributed fashion. Finally,
we let the agents in this algorithm use the same multi-arm
bandit exploration strategy as that in distributed Q-learning.

Related Work

Related DCOP Models: In a Stochastic DCOP (S-DCOP),
each constraint fi : Di1 ×Di2 → P (xi1 , xi2) now specifies
a probability distribution function of the reward as a function
of the values of the variables xi1 , xi2 ∈ X in the scope of the
function (Atlas and Decker 2010; Nguyen, Yeoh, and Lau
2012). Another close extension is the DCOP under Stochas-
tic Uncertainty model (Léauté and Faltings 2011b), where
there are random variables that take on values according to
known probability distribution functions. In these problems,
the goal is to find a complete solution that maximizes the
expected sum of all utilities. MD-DCOPs are similar to S-
DCOPs in that the reward of each value combination in a
constraint is stochastic. However, the stochasticity is due to
the change in the underlying joint state of the problem in-
stead of having the reward function explicitly represented as
a probability distribution function.

In an Uncertain DCOP (U-DCOP), the probability dis-
tribution reward functions are not known a priori to the
agents. Thus, the agents need to strike a balance between
exploration (learning the underlying probability distribution
functions) and exploitation (taking the currently believed
optimal joint action). A simpler version of this problem
is one where the reward of each value combination is a
number instead of a distribution function (Jain et al. 2009;
Taylor et al. 2010).2 In these problems, the goal is to maxi-
mize the expected cumulative reward over the time horizon.
Researchers have introduced a regret minimizing algorithm,
called HEIST, that uses a multi-arm bandit strategy to solve
this problem (Stranders et al. 2012). MD-DCOPs are sim-
ilar to U-DCOPs in that learning is required and the algo-
rithms need to balance exploration and exploitation. How-
ever, in MD-DCOPs, the agents need to learn the state tran-
sition functions but, in U-DCOPs, the agents need to learn
the reward function.

Finally, in a Dynamic DCOP (D-DCOPs), the problem
can change over time (Petcu and Faltings 2005b; Sultanik,
Lass, and Regli 2009; Yeoh et al. 2011). A typical model
of a dynamic DCOP is a sequence of (canonical) DCOPs
with changes from one DCOP to the next one in the se-
quence. In these problems, the goal is to solve each (canon-
ical) DCOP at each time step. Other related extensions in-
clude a continuous-time model where agents have dead-
lines to choose their values (Petcu and Faltings 2007), a
model where agents can have imperfect knowledge about
their environment (Lass, Sultanik, and Regli 2008), and a
model where the constraint graph can change as a function
of the value assignments in the previous time step (Zivan,
Glinton, and Sycara 2009). MD-DCOPs are similar to D-
DCOPs in that the problem changes over time. However,
the changes in MD-DCOPs are restricted to changes in the
underlying state of the problem, while the changes in D-
DCOPs include other forms, such as addition/removal of
agents/variables/constraints.

2Researchers have called the former model MAB-DCOP and
the latter model DCEE. We use the term U-DCOPs as a generaliza-
tion of both models.
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Figure 2: Experimental Results

Related MDP Models: Markov Decision Processes
(MDPs) have been shown to be effective models for plan-
ning under uncertainty involving a single decision maker.
Researchers have thus extended these models to treat multi-
agent coordination problems. One such model is the Multi-
agent MDP (Boutilier 1999), where the action space is fac-
tored into actions for each agent. Another model is the
Factored MDP (Boutilier, Dearden, and Goldszmidt 2000;
Guestrin et al. 2003), where in addition to the factored ac-
tion space, the overall reward function is also factored into
rewards among subgroups of agents. There is also the De-
centralized MDP (Dec-MDP) (Bernstein et al. 2002), where
the global state is also factored into local states for each
agent. Lastly, a Transition-Independent Dec-MDP (TI-Dec-
MDP) (Becker et al. 2004) is a subclass of Dec-MDPs,
where the transition from one local state to the next is in-
dependent of the local states and actions of all other agents.

The MD-DCOP model can be viewed as part of this fam-
ily of algorithms. Like all the above algorithms, it too as-
sumes a factored action space. Like factored MDPs, it too as-
sumes that rewards are factored into agent subgroups, where
each agent subgroup is the scope of agents in a constraint.
Like Dec-MDPs, it too assumes that the global state is fac-
tored, but the state is factored into local states for each con-
straint instead of each agent. Like TI-Dec-MDPs, it too as-
sumes that the transition from a local state to the next is inde-
pendent of the local states. However, unlike TI-Dec-MDPs,
MD-DCOPs assume a different general form of transition
independence, which we call constraint-based transition in-
dependence: the transition of a local state of a constraint to
the next local state is independent of the local states of other
constraints but is dependent on the joint actions of the agents
in the scope of the constraint associated with that local state.

While there is a large body of work on applying coordi-

nated reinforcement learning on Factored MDPs (Guestrin,
Koller, and Parr 2001; Guestrin, Lagoudakis, and Parr
2002; Kok and Vlassis 2006; Teacy et al. 2012) and Dec-
MDPs (Zhang and Lesser 2011; 2013), they typically opti-
mize the expected cumulative reward over a finite horizon
or the expected cumulative discounted reward over an infi-
nite horizon. In contrast, we optimize the average expected
reward over an infinite horizon. We believe that for infi-
nite horizon problems, optimizing the average expected re-
ward fits more naturally with many multi-agent applications,
where achieving a goal in a future time step is as important
as achieving it in the current time step. For example, in our
sensor network application, detecting an intruder next week
should not be any less valuable than detecting an intruder
today. In some cases, optimizing the average expected re-
ward is harder and the motivation for using discounted utili-
ties is mostly a convenience, not a better match with the real
objective. It is well known that discount factors are often
selected arbitrarily despite the fact that they could affect the
final policy. These considerations underscore the importance
of developing methods for optimizing the average expected
reward.

To the best of our knowledge, the only work that opti-
mizes the average expected reward in this family of prob-
lems is by Petrik and Zilberstein (2007). The main differ-
ences are that the assumption of transition independence is
different for the two models, as described above; they use a
centralized approach (a mixed integer linear program) while
we use a distributed approach; and they assume that the un-
derlying joint distribution is known while we do not.

Experimental Results
In addition to the distributed Q- and R-learning algorithms
described above, we also implemented another version of



the distributed Q-learning algorithm, where we maintain a
Q-value Qi(si,di) for each local state si ∈ Si instead of
each global state s ∈ S. The update rule is thus:

Qt+1
i (si,di) = Qti(si,di) + γ(t)

[
fi(si,di)

+Qti(s
′
i,d
′
i |d′i ∈ argmax

d′∈D
Qt(s′i,d

′))

−Qti(s,di)−Qti(s0,d0
i )
]

(26)

We call this version the Decomposed Distributed Q-learning
algorithm. Like the distributed R-learning algorithm, this al-
gorithm does not have any convergence guarantees.

We compare the above three algorithms to Multi-Arm
Bandit DCOP (MAB-DCOP) (Stranders et al. 2012), a
regret-minimizing algorithm that seeks to maximize the ex-
pected cumulative reward over the time horizon in a DCOP
with reward uncertainty. We run our experiments on a 64
core Linux machine with 2GB of memory and evaluate the
algorithms on our motivating sensor network domain.

We vary the number of agents |A| and the number of con-
straints |F| by varying the topology of the sensor network.
We used a 4-connected grid topology, where each sensor has
a constraint with each sensor in its four cardinal directions.
We fixed the number of rows in the grid to 3 and varied the
number of columns from 1 to 4. We also varied the number
of values per agent |Di| of each agent ai from 4 to 8 and the
number of local states per constraint |Si| from 2 to 10.

We make the following observations about the results
shown in Figure 2:
• Figures 2(a–b) show the convergence rate of the four al-

gorithms. In the bigger problem, the Distributed Q al-
gorithm ran out of memory due to the large number of
global joint states. In the smaller problem, it finds worse
solutions than the other algorithms, but that is likely due
to its slow convergence rate as it is guaranteed to con-
verge to the global optimum. The results also show that
both decomposed versions of the Q- and R-learning al-
gorithms performed better than MAB-DCOP, which is
not surprising as MAB-DCOP was not designed to solve
MD-DCOPs and thus does not exploit the assumption
that the underlying transitions are Markovian.

• Figures 2(c–e) show the final solution quality of the al-
gorithms. We omitted Distributed Q in the latter two fig-
ures as it ran out of memory. In general, MAB-DCOP
and the Decomposed Distributed Q-learning algorithm
performed equally well and the Distributed R-learning
algorithm performed the best. These results thus affirm
that the conclusions found for the centralized versions
of the reinforcement learning algorithms, where the cen-
tralized R-learning algorithm was found to perform bet-
ter than the centralized Q-learning algorithm (Mahade-
van 1996), also hold for the distributed case.

Conclusions
The Dynamic DCOP formulation is attractive as it is able to
model various multi-agent coordination problems that dy-
namically change over time. Unfortunately, existing work
typically assumes that the problem at each time step is in-
dependent of the problems in the other time steps. This as-

sumption does not hold in problems like our motivating sen-
sor network domain, where the choice of value assignments
(i.e., actions by the agents) in one time step can affect the
problem in the next time step. In this paper, we take the
first step towards capturing this inter-dependence, by intro-
ducing the Markovian Dynamic DCOP (MD-DCOP) model,
where the underlying transition functions are Markovian.
We also introduce several distributed reinforcement algo-
rithms to solve this problem, and show that they outper-
form MAB-DCOP, a regret-minimizing multi-arm bandit al-
gorithm, for a range of sensor network problems.
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