
Fault-Tolerant Planning under Uncertainty

Luis Pineda† Yi Lu† Shlomo Zilberstein† Claudia V. Goldman‡

†School of Computer Science, University of Massachusetts, Amherst, MA 01003, USA
‡General Motors, Advanced Technical Center, Herzliya Pituach 4673341, Israel

Abstract
A fault represents some erroneous operation of a
system that could result from an action selection
error or some abnormal condition. We formally de-
fine error models that characterize the likelihood of
various faults and consider the problem of fault-
tolerant planning, which optimizes performance
given an error model. We show that factoring the
possibility of errors significantly degrades the per-
formance of stochastic planning algorithms such
as LAO*, because the number of reachable states
grows dramatically. We introduce an approach to
plan for a bounded number of faults and analyze
its theoretical properties. When combined with a
continual planning paradigm, the k-fault-tolerant
planning method can produce near-optimal perfor-
mance, even when the number of faults exceeds the
bound. Empirical results in two challenging do-
mains confirm the effectiveness of the approach in
handling different types of runtime errors.

1 Introduction
We are concerned with decision-theoretic planning in large
domains that involve uncertainty about both the outcome of
actions as well as erroneous operation of the system. In the
driving domain, examples of uncertainty associated with ac-
tions include the uncertainty about their duration or about
traffic conditions. Examples of erroneous operation include
taking the wrong turn or having a flat tire. We model erro-
neous operation using actions that represent various types of
errors or failures, referred to as faults. The distinction be-
tween uncertain effects of regular actions and those captured
by faults is a design choice rather than an explicit property
of the domain. In practice, planning for all possible faults in
advance can make an easy problem intractable.

One approach to handle faults is to generate a universal
plan [Schoppers, 1987] – one that covers any possible situa-
tion the system may encounter, even when errors are made.
But universal planning is impractical when the domain is
large [Ginsberg, 1989]. In fact, when modeling the prob-
lem as a Markov decision process (MDP), a policy that cov-
ers the entire state space, such as the one generated by the
value iteration (VI) or policy iteration (PI) algorithms, is a
universal plan. Efficient algorithms for generating compact

universal plans for MDPs have been developed, most notably
LAO* [Hansen and Zilberstein, 2001], LRTDP [Bonet and
Geffner, 2003] and their extensions. These algorithms ex-
ploit reachability analysis to converge on optimal universal
plans that include only states that are reachable during the
course of plan execution. However, as we illustrate in this
paper, even such compact universal plans are unrealistic in
some application domains. For example, when driving from
Boston to New York, we don’t really need to consider being
in Washington as part of the plan, although some extremely
unlikely sequence of errors could lead us there. Hence, the
fundamental questions addressed in this paper are: (1) How
can we create plans that are robust to errors, without mak-
ing them unnecessarily large and cumbersome? and (2) How
can we guarantee that a valid plan will always be available
at runtime, even when errors occur?

Interest in fault-tolerant planning has a long history in con-
trol theory and engineering [Dubash et al., 1992], focusing
mostly on mechanisms to overcome faults via redundancy
and parallelism. Within AI, our work is most closely related
to that of Jensen et al. [2004], who examine deterministic
planning systems in which actions are allowed to have addi-
tional “faulty consequences”. In contrast, we allow normal
actions to have multiple possible probabilistic outcomes. A
fault is associated with the execution of a faulty action, ei-
ther mistakenly performing a different normal action than the
one specified by the plan (e.g., missing an exit in driving) or
performing a special action that represents some faulty con-
dition (e.g., having a flat tire). The approach we present is
based on planning for a bounded number of faults, an idea
previously explored by Meuleau and Smith [2003] who focus
on reducing the total number of branches in a plan to k to
better understand, verify or communicate the plan. We don’t
limit branching per se, but instead reduce the overall number
of states reachable by the optimal plan.

The rest of the paper is structured as follows. In Section
2, we define runtime faults, error models, and fault-tolerant
plans. In Section 3, we describe algorithms for fault-tolerant
planning and in Section 4, we introduce an effective method
for generating plans that address a bounded number of faults.
We also analyze the properties of this k-fault-tolerant plan-
ning algorithm. In Section 5, we present the continual plan-
ning paradigm that creates a new k-fault-tolerant plan online
once k faults occur. We assess the performance of the plan-
ning algorithms and the continual planning paradigm in Sec-
tion 6 and conclude with a summary of the contributions.

2 Fault-Tolerant Planning Problems
We represent the planning problem using a Markov decision
process (MDP). We focus in this work on stochastic shortest
path problems, where the goal is to minimize the expected
cost of reaching some goal state. The underlying MDP,M,
is defined by a tuple of the form: 〈S,A, T,C, s0, G〉 where:
S is a finite set of states; A is a finite set of actions; T (s′|s, a)
is the transition probability of ending in state s′, when action
a is taken in state s; C(s, a) is the cost of taking action a is
state s; s0 ∈ S is a given start state; and G ⊂ S is a set of
terminal goal states.

Starting in state s0, the objective is to reach one of the goal
states while minimizing the expected cumulative cost of the
actions taken. There are no dead-ends in the problems we
tackle, and there is always a proper policy that reaches a goal
state with probability 1. Thus, we do not use discounting.

A solution is a policy π, represented as a mapping from
states to actions: π : S → A. The well-known Bellman
equation defines a value function over states, V ∗(s), from
which the optimal policy π∗ can be extracted:

V ∗(s) = min
a

[C(s, a) +
∑
s′∈S

T (s′|s, a)V ∗(s′)] (1)

There are many algorithms for solving MDPs, most no-
tably value iteration (VI) and policy iteration (PI) [Puterman,
1994]. These dynamic programming methods guarantee con-
vergence on the optimal policy, but cannot scale to very large
domains. We therefore employ search-based methods that ex-
ploit the fact that the set of states reachable by an optimal
policy can be a small subset of S, particularly when a good
heuristic is given. A good example is LAO∗ [Hansen and
Zilberstein, 1998; 2001] – an extension of the classic search
algorithms A∗ and AO∗ that can find solutions with loops.
This makes it possible to solve MDPs, while leveraging the
vast amount of work on reachability analysis and heuristic
methods in classical planning.

An MDP policy is said to be a universal policy if it covers
every state s ∈ S. A partial policy covers a subset of states
in S. In fact, LAO∗ can generate the best partial solution
graph for a given MDPs, without covering states that are not
reachable by the plan. We use the notation S(π) to represent
the set of states covered by a partial policy π.

2.1 Execution Time Faults
We model faults using alternate actions that take place instead
of the planned action and could have undesired consequences.
Definition 1 (fault w.r.t. a plan). We say that an action a
executed in state s is a fault w.r.t. plan π if a 6= π(s).
Definition 2 (error model). Given an MDP, an error model ξ
is defined as a probability distribution ξ(a′|s, a) over actions
for each state s ∈ S and given action a ∈ A.

In general, the faulty action a′ ∈ A′, could be the same as
the intended action a, another “normal” action from A that
is available to the decision maker when the MDP is solved,
or a new “abnormal” action that represents some faulty (and
usually undesired) operation of the system. To simplify the
notation, we assume that the given transition model T is de-
fined over all normal and abnormal actions in A′.

Definition 3 (fault-free state). A state s ∈ S is said to be a
fault-free state w.r.t. error model ξ iff ∀a : ξ(a|s, a) = 1.

A given MDP and an error model induce a new transition
function T ′ that factors the possibility of error actions:

T ′(s′|s, a) =
∑
a′

T (s′|s, a′)ξ(a′|s, a) (2)

That is, T ′ specifies the likelihood of outcome state s′ when
action a is taken in state s, with or without a fault occurrence.
Definition 4 (error model with undesirable faults). Let V ∗
and π∗ be the optimal value function and policy for a given
MDP. We say that model ξ is with undesirable faults iff

∀s, a : V ∗(s) ≤ C(s, a) +
∑
s′∈S

T ′(s′|s, a)V ∗(s′).

That is, when we plug in the transition model T ′ that fac-
tors an error model with undesirable faults into the Bellman
equation, it can only increase the cost of reaching the goal
(relative to the optimal cost), i.e., errors cannot be helpful.
Proposition 1. A sufficient condition under which any error
model is with undesirable faults is that the error model in-
clude no abnormal actions. That is A′ \A = ∅.

The property holds because when no abnormal actions ex-
ist, the error model simply replaces the best action with an-
other normal action. But no normal action can have a lower
cost compared to the optimal one, since that would contradict
optimality.

2.2 Fault-Tolerant Plans
Definition 5 (fault-tolerant plan). A plan π is fault tolerant
w.r.t. error model ξ if there is no state s reachable as a result
of correct or faulty operation for which π(s) is undefined.
That is, ∀s ∈ S(π) : T ′(s′|s, π(s)) > 0⇒ s′ ∈ S(π).
Definition 6 (k-fault-tolerant plan). A plan π is k-fault-
tolerant w.r.t. error model ξ if every state s reachable from
the initial state s0 as a result of at most k execution faults
according to ξ is covered by the plan π.

3 Finding Optimal Fault-Tolerant Plans
We say that a fault-tolerant plan is optimal, when it mini-
mizes the expected cost of reaching a goal state given an error
model. There is no obvious resemblance between the optimal
plan for a given MDP and the optimal fault-tolerant plan. For
example, the optimal plan in the driving domain may involve
12 turns. If the error model indicates that missing turns is
likely, the optimal fault-tolerant plan may be an entirely dif-
ferent path that is a bit longer, but has fewer turns.
Proposition 2. Given an MDP and an error model, the ac-
tions that optimize the following value function form an opti-
mal fault-tolerant plan:

V̄ ∗(s) = min
a

[C(s, a) +
∑
s′∈S

T ′(s′|s, a)V̄ ∗(s′)].

Proof. (Sketch) Note that T ′(s′|s, a) is the induced transi-
tion model for the given MDP plus error model as shown in
Eq. (2). The value function V̄ ∗ therefore satisfies the Bell-
man equation for the induced MDP. Hence, V̄ ∗ provides the
optimal solution for the fault-tolerant planning problem.

The above equation can be solved using standard MDP
solvers such as VI or PI. For large domains, value iteration
is slow and is likely to limit scalability. Search-based al-
gorithms, such as LAO*, can take advantage of reachability
analysis to reduce the number of states evaluated and run-
time. However, with unlimited errors the number of reachable
states could be very large, diminishing the benefits of LAO*.
For example, in the racetrack problem (see Section 6), LAO*
is orders-of-magnitude faster than VI when there is no error
model, but it is only about twice as fast once the error model
is taken into account. The gap is even more striking in more
complex problems such as the driving domain (see Section
6). How can one exploit the power of reachability analysis
while allowing for execution-time errors?

4 Finding k-Fault-Tolerant Plans with LAO∗

The intuitive motivation for separating non-faulty operation
from faulty operation is that faults are often exceptional and
rare. While it’s possible that a driver misses a turn, the like-
lihood that it happens frequently is low. This suggests that
planning in advance for a bounded number of faults – and
thus limiting the number of reachable states covered by the
plan – could be beneficial. For search-based MDP solvers
such as LAO*, this could reduce planning time dramatically
in exchange for optimality with regard to the full error model.
And, as we will show later, when more errors than planned for
occur, we can still operate efficiently thanks to online plan-
ning during plan execution.

We can use LAO∗ to produce a k-fault-tolerant plan by ap-
plying it to an augmented MDP that accounts for a bounded
number of faults. The state space of the augmented MDP is
(s, j) ∈ S × {0, 1, ..., k} where s is a state in the original
state space and j is a bounded fault count, 0 ≤ j ≤ k. The
initial state of the augmented MDP is (s0, 0), indicating that
no faults occurred. The transition function of the augmented
MDP is defined as follows. When j = k, faults can no longer
occur, so the transition function is identical to the original
transition function T :

∀s, a, s′ Pr((s′, k)|(s, k), a) = T (s′|s, a) (3)

When 0 ≤ j < k the transition function needs to factor the
possibility of a fault occurring:

∀s, a, s′ Pr((s′, j)|(s, j), a) = ξ(a|s, a)T (s′|s, a) (4)

∀s, a, s′ Pr((s′, j+1)|(s, j), a) =
∑
a′ 6=a

ξ(a′|s, a)T (s′|s, a′)

Finally, the cost function and goal states remain the same (ig-
noring the fault count component of the state).

Proposition 3. The solution produced by LAO∗ for the
above augmented MDP provides an optimal solution for the
k-fault-tolerant planning problem.

We now establish and discuss several useful properties of
k-fault-tolerant plans.

Lemma 1. Let V ∗k denote the value function of an optimal k-
fault-tolerant plan. When the error model is with undesirable
faults, ∀s : V ∗k−1(s, k − 1) ≤ V ∗k (s, k − 1).

Proof. (Sketch) Note that this is equivalent to proving ∀s :
V ∗(s) ≤ V ∗k (s, k − 1) (it is easy to see that for any k,
V ∗k (s, k) and V ∗(s) correspond to the same problem). Sup-
pose value iteration is used to compute value function Vk,
and all Vk(s, k− 1) are initialized to V ∗(s). Then, due to the
definition of undesirable faults and the fact that V ∗k (s, k) =
V ∗(s), for all states (s, k − 1) the value Vk(s, k − 1) must
converge to some value V ∗k (s, k − 1) ≥ V ∗(s). Since value
iteration converges to a unique optimal solution regardless of
the initial value, this completes the proof.

Proposition 4. When the error model is with undesirable
faults, ∀s : V ∗k−1(s, j) ≤ V ∗k (s, j), for all 0 ≤ j ≤ k − 1.

The MDPs corresponding to the k-fault and (k−1)-fault-
tolerant problems are exactly the same except for all states of
the form (s, k−1); Lemma 1 shows that V ∗k−1(s, k−1) ≤
V ∗k (s, k− 1). Moreover, there are no transitions from any
state (s, k − 1) to (s′, j) with j < k − 1. Thus the optimal
cost for the remaining states (which have the same transition
function and costs) must be at least equal (or higher) in the
k-fault-tolerant problem.
Proposition 5. Let h(s) be an admissible heuristic for the
original MDP. When the error model is with undesirable
faults, h(s)≤V ∗(s)≤V ∗k (s, j)≤ V̄ ∗(s), for all 0 ≤ j ≤ k.

The first inequality holds because the heuristic is admissi-
ble. The second and third inequalities result directly from
Proposition 4 by noting that V ∗(s) = V ∗0 (s, 0) and that
V̄ ∗(s) = limk→∞ V ∗k (s, j) for all 0 ≤ j ≤ k.
Theorem 1. When the error model is with undesirable faults,
a k-fault-tolerant plan π computed by LAO* is an optimal
fault-tolerant plan, if for every reachable state (s, k) in the
plan, s is fault-free.

Proof. The k-fault-tolerant plan is created by solving an
MDP that factors the full error model for all states (s, j) with
j < k. Only when j = k, we “distort” the transition func-
tion to allow no more faults. But for every fault-free state,
the “distorted” transition is identical to transition in the aug-
mented MDP with the full error model. Hence, in that case,
for every state covered by the plan we are in fact solving the
problem with the full error model. However, this might not
be the case for states in the explicit graph that are outside the
best partial solution graph. That is, when considering the full
error model, the value of these states can possibly change.
But Proposition 5 shows that, with undesirable faults, consid-
ering the full error model can only increase the cost of these
states, so they must not be part of the optimal plan.

It is easy to show with a counterexample that Theorem 1 does
not necessarily hold when faults are not undesirable.
Theorem 2. A k-fault-tolerant plan π produced by LAO* is
an optimal fault-tolerant plan with respect to initial state s0,
if for every state (s, k) expanded by LAO* during the plan-
ning process, s is fault-free.

Proof. (Sketch) This follows by a similar argument to that
used for Theorem 1. However, in this case faults need not be
undesirable, since we are solving the exact same problem for
all states expanded during the planning process.

5 Continual Planning Paradigm
One problem with executing k-fault-tolerant plans is that
the number of faults at runtime may exceed k. To ad-
dress that, we propose a continual planning paradigm that
can handle an unbounded number of faults by using mul-
tiple k-fault-tolerant plans. Continual planning refers to a
variety of methods for interleaving planning and plan exe-
cution in situations where complete offline planning cannot
address all runtime contingencies [Brenner and Nebel, 2009;
desJardins et al., 1999]. In our case, the idea is to create a
new k-fault-tolerant plan once the k-th fault occurs. As long
as we can produce the new plan before another fault occurs,
planning will not delay execution. This incremental planning
during execution continues until the goal is reached.

The continual planning paradigm is described in Algo-
rithm 1. The general approach is to generate a k-fault-tolerant
plan and execute it until the k-th fault occurs. At that point,
two things happen in parallel: a new k-fault-tolerant plan is
created (Line 6) while executing the next action of the exist-
ing plan (Line 5). In the experiments we conducted, the new
plan was produced during the execution of one real world ac-
tion (e.g., executing one driving maneuver), but the approach
can be easily extended to address longer planning times.

There is one complication in this online planning process.
Since the new plan will be activated from a start state that is
yet unknown, all the possible start states need to be taken into
account, including those reached as result of another fault.
Rather than modify LAO* to handle multiple start states, we
create a new dummy start state in Line 4 that leads via a single
zero-cost action to all the start states we may encounter when
planning is completed. For the sake of clarity, Algorithm 1
describes a straightforward implementation. Several possible
improvements of this paradigm that make better use of idle
time are discussed in the conclusion.

Evaluating the Continual Planning Paradigm Because it
is often hard to assess precisely the quality of the intermediate
plans, continual planning paradigms are often hard to evalu-
ate analytically and require extensive experimentation. How-
ever, our paradigm is amenable to a precise analytical evalua-
tion. Let πk(s, j) be a universal optimal k-fault-tolerant plan
computed using value iteration over the entire state space. At
runtime, we always execute πk(s, j) with the following rule.
Whenever we reach a state (s, k) (once the k-th fault occurs),
we execute one last action from the old plan and, if the out-
come state is s′ (as a result of non-faulty or faulty operation),
we move to state (s′, 0) and start executing the new plan.

More formally, consider the Markov chain defined over
states of the form (s, j), with initial state (s0, 0) and the fol-
lowing transition function, for any s ∈ S, 0 ≤ j < k:

Pr((s′, j)|(s, j)) = ξ(πk(s, j)|s, πk(s, j))T (s′|s, πk(s, j))

Pr((s′, j + 1)|(s, j)) =
∑

a′ 6=πk(s,j)

ξ(a′|s, πk(s, j))T (s′|s, a′)

Pr((s′, 0)|(s, k)) =
∑
a′

ξ(a′|s, πk(s, k))T (s′|s, a′)

The last transition probability from (s, k) to (s′, 0) indi-
cates the transition to a new plan. Let Vcp denote the value
function defined over this Markov chain. Then we have:

Algorithm 1: Continual Planning Paradigm
input: MDP problem 〈S,A, T,C, s0, G〉, error bound k

1 (s, j)← (s0, 0);
2 π ← Find-k-Fault-Tolerant-Plan((s0, 0), k);

while s /∈ G do
if j 6= k then

3 (s, j)← ExecutePlan(s, π(s, j));
else

4 Create new state ŝ with one zero-cost action â
s.t. ∀s′ ∈ S : Pr((s′, 0)|ŝ, â) = T ′(s′|s, π(s, j));
do in parallel

5 (s, j)← ExecutePlan(s, π(s, j));
6 π′ ← Find-k-Fault-Tolerant-Plan(ŝ, k);
7 π ← π′; (s, j)← (s, 0);

Proposition 6. Vcp(s0, 0) provides the expected value of the
continual planning paradigm applied to the given problem.

6 Experimental Results
We illustrate and evaluate the developed algorithms using two
applications domains. One is a moderate size domain that
extends the classical racetrack domain widely used as a re-
inforcement learning (RL) testbed [Sutton and Barto, 1998].
The other domain is based on a rich simulation of a driving
scenario that we developed. We describe the two domains,
their associated error models, and the obtained results.

6.1 Experiments with the Racetrack Problem
Domain Description Our first domain is a modified ver-
sion of the racetrack problem described in [Sutton and Barto,
1998]. The original problem involves a simple simulation of
a race car on a discrete track of some length and shape, where
a starting line has been drawn on one end and a finish line on
the opposite end of the track. The state of the car is deter-
mined by its location and its two-dimensional velocity. The
car can change its speed in each dimension by at most 1 unit,
giving a total of nine possible actions. After applying an ac-
tion there is a probability pslip that the resulting acceleration
is zero, simulating failed attempts to accelerate/decelerate be-
cause of unpredictable slips on the track. The goal is to go
from the start line to the finish line in as few moves as possi-
ble. For a complete description of the original problem, the
interested reader can refer to [Sutton and Barto, 1998].

We modified the racetrack problem in several ways. Be-
sides increasing the domain size, we use a threshold MDS
(maximum deterministic speed) below which the actions of
the car are deterministic. Additionally, we introduce the con-
cept of a fault-prone location, where, with probability per, the
action performed will be different from the intended action.
Finally, we handle collisions with the boundary differently: if
the projected path of the car is determined to cross the edge
of the track at any square not on the finish line, the car halts
in that location. Moreover, in any of these locations, the car
can only perform recovery actions (each with a cost of 10)
that bring it back to the racetrack in one move.

START

GOAL1

GOAL2

GOAL3

Figure 1: The racetrack domain with 3 different goal states

For the fault-prone locations, the error model allows only
certain action selection errors: a faulty action may differ from
the intended action by at most one unit in one of the dimen-
sions (vertical or horizontal). For example, if the intended ac-
tion is “accelerate horizontally by 1 unit and decelerate verti-
cally by 1 unit”, the possible faulty actions are: “accelerating
horizontally by 1 unit” and “decelerate vertically by 1 unit.”

Results Figure 1 shows the racetrack used in our experi-
ments, which includes 20,147 states. We performed three sets
of experiments, each one corresponding to a different goal lo-
cation. In all cases pslip = 0.1, MDS = 3, and per = 0.05
with all the locations inside the track being error-prone. Four
planning approaches were evaluated. The first two are value
iteration (VI) and LAO* (LF) using the full error model. The
third (PE) is a continual planning approach in which planning
ignores the error model, but when a run time error occurs, the
car is brought to a stop and a new plan is computed from the
current location. The last approach (CP) is our k-fault contin-
ual planning approach using k = 1. In all cases we used the
deterministic shortest-path heuristic for LAO*.

Table 1 (left) shows the average CPU time spent on plan-
ning for the three set of experiments, computed based on 100
simulations for VI and LF, and 500 simulations for the contin-
ual planning approaches. Note that using LAO* with the full
error model doesn’t reduce planning time significantly with
respect to value iteration (about 60% reduction). However,
both continual planning approaches reduce planning time by
an order of magnitude with respect to using LAO* with the
full error model. Our proposed continual planning approach
is faster because re-planning is done without stopping execu-
tion, therefore not having any added overhead each time an
error occurs.

CPU Time Total Cost
VI LF PE CP VI LF PE CP

GOAL1 7,452 2,939 242 113 24.954 15.929 12.603 10.665
GOAL2 7,452 3,124 553 262 31.334 22.678 20.532 17.573
GOAL3 7,452 3,366 613 456 30.194 22.020 19.555 17.093

Table 1: Average planning time (in milliseconds) and total
cost of planning and execution for the racetrack domain

Figure 2: Relative difference in total cost with respect to the
lower bound for the racetrack domain

We quantify the trade-off between execution and planning
time by setting up a particular duration for each action in
the real world, 500 milliseconds per action in this example.
This is equivalent to associating a cost of 0.002 per millisec-
ond of planning, allowing us to combine planning and execu-
tion costs and compute the total expected cost of all four ap-
proaches. These numbers are also shown in Table 1 (right). In
all cases the total cost of using CP is more than 20% smaller
than the cost of using LF (33% for GOAL1). Note that the PE
approach loses some of its advantage with regards to the ap-
proaches using the full error model, since it has the additional
cost of stopping the car each time an error happen (about 2.7
steps on average) as well as the re-planning overhead.

We compared the total expected cost of the four approaches
with a theoretical (loose) lower bound equal to the optimal
cost with the full error model, without considering planning
time. Figure 2 shows the relative increase of expected cost
per method with respect to this bound. In all cases, the CP
approach differs from the bound by less than 5%, while the
rest of the approaches yield a much greater increase of (at
least) 20%, 35% and 85% for PE, LF and VI, respectively.

We also conducted experiments to measure the influence of
the parameter k, up to k = 3, on the continual planning ap-
proach. These experiments showed that the decrease in cost
resulting from a larger k was not enough to offset the increase
in computational time needed to construct the plan with a
larger set of reachable states. Note that the expected cost
obtained with the CP approach using k = 1 (ignoring plan-
ning time) is already within 1% of the optimal cost. While
this value can be further reduced with a larger k, the com-
putational time could also increase by as much as an order
of magnitude. For instance, for k = 3, the CPU time in the
fourth column of Table 1 increases to 1,115, 2,996, and 7,154
for GOAL1, GOAL2, and GOAL3, respectively, more than
an order of magnitude higher than the CPU time for k = 1.
Although these results are specific to the racetrack domain,
we expect that values of k ≤ 2 would lead to the best overall
performance in other domains.

6.2 Experiments with the Driving Domain
Domain Description We also evaluated the fault-tolerant
planning approach in a simulated driving domain. The prob-
lem involves driving a car from an initial location to a desti-

CPU Time Total Cost
VI PE CP VI PE CP

GOAL1 256,219 3,128 2,782 311.02 82.33 63.08
GOAL2 256,219 4,030 3,905 346.72 119.03 98.41
GOAL3 256,219 4,102 3,877 348.42 117.40 102.78

Table 2: Average planning time (in milliseconds) and total
cost of planning and execution for the driving domain

nation. The objective in this domain is to minimize the cost
of travel, where the overall cost function involves both the
cost of time and cost of human effort. To create the environ-
ment, we used the OpenStreetMap (OSM) package (http:
//wiki.openstreetmap.org), which is the result of
a collaborative project to create a free editable map of the
world. Each road is composed of a series of discrete loca-
tions and the underlying graph is available for manipulation
by users via several existing tools and APIs. In our testbed,
roads could have different traffic conditions and can be tagged
as having various degrees of driving difficulty. Some roads
can be traveled in both directions and others in one way only.

We created a user interface that allows us to upload a re-
gion of the map, identify start and destination locations, and
display an icon of the vehicle on the map during plan exe-
cution. Different colors show the level of difficulty navigat-
ing different segments of the map. The state of the vehicle
includes four main components: a controlled component de-
scribing the underlying state of the vehicle including its po-
sition, uncontrolled component that includes such features as
traffic conditions, stability indication, and the driver state.

The available actions include moving the vehicle forward,
turning at intersections, as well as continuing the currently
executed action. When an action is performed, the vehicle
enters an intermediate “unstable” state for the duration of the
action, during which no new actions can be executed. There
is uncertainty about the time it takes to restore stability (or
complete an action). Faults in this domain represent driver
errors such as missing a turn or taking the wrong exit.

Results We experimented with an instance of this domain
that involves driving in a segment of Manhattan. The size of
the state space was 2,198,400 states. We performed three sets
of experiments, each one corresponding to a different start lo-
cation. LAO* using the full error model ran out of memory,
thus we only present results for the three other planning ap-
proaches. VI and CP are the same methods as described in the
previous section. PE here is a continual planning approach
in which planning ignores the error model and whenever an
error occurs, the system completes the currently executed ac-
tion and then waits for a new plan to be computed from the
resulting state. In all cases we used a heuristic computed by
A* applied to a deterministic version of the problem.

Table 2 (left) shows the average CPU time spent on plan-
ning by each method. The average was computed over 50
simulations for VI and 100 simulations for the continual plan-
ning approaches. Both continual planning approaches reduce
planning time by two orders of magnitude with respect to VI.
Moreover, in all cases the CP approach is better than the PE
approach by approximately 5% to 10%.

Table 2 (right) shows the expected total cost of the three

Figure 3: Relative difference in total cost with respect to the
lower bound for the driving domain

planning approaches. In this case we trade-off execution and
planning time by setting up a cost of 1.0 per second of plan-
ning. In all the test cases, the total cost of using CP is sig-
nificantly lower than the cost of using VI, by more than 70%.
Figure 3 shows the relative increase in cost of the three ap-
proaches with respect to the same lower bound used in the
racetrack domain. In all cases, the CP approach is much
closer to the theoretical optimal value, by (at least) a factor
of 2 relative to PE and a factor of 20 relative to VI.

7 Conclusion
We present an effective way to handle runtime faults in plan-
ning under uncertainty. We target problem domains with a
large number of states, where planning algorithms such as
LAO* have a profound advantage over VI. We define for-
mally the notion of execution time faults and confirm em-
pirically that the advantage of LAO* diminishes in the pres-
ence of an error model that usually increases the number of
reachable states by a large factor. Creating optimal plans that
factor an unlimited number of execution-time errors is often
intractable, even in modest-size domains.

To address this challenge, we propose and analyze an ap-
proach that is based on incrementally generating plans that
can handle a bounded number of faults, referred to as k-fault-
tolerant plans. When the fault bound is reached at runtime,
a new plan is created online. A continual planning paradigm
based on this approach is shown to produce near-optimal re-
sults in two complex stochastic domains.

In the future, we plan to consider ways to improve the per-
formance of the continual panning paradigm by using an any-
time version of LAO* [Zilberstein, 1996] to create the k-fault-
tolerant plans. This, combined with a meta-level reasoning
component that will optimize the time allocation to planning
– particularly the offline planning needed to generate the ini-
tial plan that delays the start of plan execution – will help
to further reduce the overhead of planning and increase the
value of the plan. Employing an anytime algorithm will also
guarantee the availability of the new plan when it is needed.

Finally, when k > 1, creating a new k-fault-tolerant plan
could start before the k-th fault occurs, or even before the first
fault occurs. Designing more effective ways to plan during
execution in the spirit of the continual computation approach
proposed by Horvitz [2001] could be beneficial in our setting.

References
[Bonet and Geffner, 2003] Blai Bonet and Hector Geffner.

Labeled RTDP: Improving the convergence of real-time
dynamic programming. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
pages 12–21, 2003.

[Brenner and Nebel, 2009] Michael Brenner and Bernhard
Nebel. Continual planning and acting in dynamic multi-
agent environments. Autonomous Agents and Multi-Agent
Systems, 19(3):297–331, 2009.

[desJardins et al., 1999] Marie E. desJardins, Edmund H.
Durfee, Charles L. Ortiz, and Michael J. Wolverton. Con-
tinual planning and acting in dynamic multiagent environ-
ments. AI Magazine, 20(4):13–22, 1999.

[Dubash et al., 1992] Rumi M. Dubash, I-ling Yen, and
Farokh B. Bastani. Fault tolerant process planning and
control. In Proceedings of the Sixteenth Annual Interna-
tional Computer Software and Applications Conference,
pages 188–193, 1992.

[Ginsberg, 1989] M. L. Ginsberg. Universal planning: an
(almost) universally bad idea. AI Magazine, 10(4):40–44,
1989.

[Hansen and Zilberstein, 1998] Eric A. Hansen and Shlomo
Zilberstein. Heuristic search in cyclic AND/OR graphs. In
Proceedings of the Fifteenth National Conference on Ar-
tificial Intelligence, pages 412–418, Madison, Wisconsin,
1998.

[Hansen and Zilberstein, 2001] Eric A. Hansen and Shlomo
Zilberstein. LAO*: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1-2):35–
62, 2001.

[Horvitz, 2001] Eric Horvitz. Principles and applications
of continual computation. Artificial Intelligence, 126(1-
2):159–196, 2001.

[Jensen et al., 2004] Rune M. Jensen, Manuela M. Veloso,
and Randal E. Bryant. Fault tolerant planning: To-
ward probabilistic uncertainty models in symbolic non-
deterministic planning. In Proceedings of the Four-
teenth International Conference on Automated Planning
and Scheduling, pages 335–344, 2004.

[Meuleau and Smith, 2003] Nicolas Meuleau and David E.
Smith. Optimal limited contingency planning. In Pro-
ceedings of the Twenty-First Conference on Uncertainty in
Artificial Intelligence, pages 417–426, 2003.

[Puterman, 1994] Martin L. Puterman. Markov Decision
Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY, USA, 1994.

[Schoppers, 1987] Marcel J. Schoppers. Universal plans for
reactive robots in unpredictable environments. In Proceed-
ings of the Tenth International Joint Conference on Artifi-
cial Intelligence, pages 1039–1046, 1987.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 1998.

[Zilberstein, 1996] Shlomo Zilberstein. Using anytime algo-
rithms in intelligent systems. AI Magazine, 17(3):73–83,
1996.

