
Continual Planning for Search and Rescue Robots

Luis Pineda, Takeshi Takahashi, Hee-Tae Jung, Shlomo Zilberstein, Roderic Grupen
College of Information and Computer Sciences,

University of Massachusetts Amherst, MA 01003, USA
{lpineda,ttakahas,hjung,shlomo,grupen}@cics.umass.edu

Abstract— The deployment of robots for emergency response
tasks such as search and rescue is a promising application of
robotics with growing importance. Given the perilous nature
of these tasks, autonomous robot operation is highly desirable
in order to reduce the risk imposed on the human rescue
team. While much work has been done on creating robotic
systems that can be deployed for search and rescue, limited
work has been devoted to devise efficient real-time automated
planning algorithms for these tasks. In this work, we present
REDHI, an efficient algorithm for solving probabilistic models
of complex problems such as search and rescue. We evaluate
our algorithm on the search and rescue problem using both an
abstract domain representation and a semi-realistic simulator
of an existing robot system. The results show that REDHI can
obtain near optimal performance with negligible planning time.

I. INTRODUCTION

We are concerned with the deployment of robots for
emergency response tasks such as urban search and rescue
(USAR) [1], wilderness search and rescue (WiSAR) [2] and
natural disasters [3]. Robots can be of immense values on
these tasks by helping the human rescue team to explore po-
tentially dangerous territory, neutralize environmental threats
and assist in the evacuation or treatment of victims.

Given the dangerous nature of emergency response tasks
such as search and rescue, autonomous robot operation is
highly desirable to reduce the risk of the humans involved
in the task. In this sense, a crucial component to achieve
autonomous operation is the planning algorithm used by the
robot, which must take into account uncertainty about the
robot’s observations, its actions and the underlying state of
the environment. Although much work has been devoted to
developing robotic systems that can be used for search and
rescue [4], [5], [6], [7], [8], limited work has been done on
creating automated planning algorithms for this problem.

A popular model for probabilistic planning is the Markov
Decision Process (MDP) [9]. MDPs offer a highly ex-
pressible representation that can model uncertainty about
an agent’s operation and its knowledge of the surrounding
environment. Moreover, the model can be extended to handle
partial observability [10] and multiple cooperating agents
[11]. However, solving MDPs is computationally intractable
in general, a problem that has limited their application to
time-sensitive tasks such as search and rescue robots.

The contribution of our work is an efficient approach to
solve MDPs based on the combination of reduced models
and hindsight optimization, integrated into a continual (on-
line) planning framework for solving MDPs. The resulting

algorithm, REDHI, is able to solve MDPs extremely fast
and with close to optimal performance. By using reduced
models, REDHI makes it possible to increase the scalability
of hindsight optimization approaches. We evaluate the use
of our algorithm for search and rescue robots using a semi-
realistic simulation of the uBot [12] robotic system.

II. RELATED WORK

The use of reduced models to solve MDPs has re-
ceived considerable attention in the planning community.
Determinization-based approaches have gained popularity in
recent years, after the surprising success of a deterministic
online planner, FF-Replan [13], in the first international
probabilistic planning competition [14]. More robust versions
of this idea have been developed afterward and are now some
of the state-of-the-art planners for goal oriented MDPs [15],
[16]. Some of these are closely related to our work due to
the use of hindsight optimization [17], [18].

Additionally, our formulation of the search and rescue
problem is a cost-based variant of the conformant probabilis-
tic planning (CPP) problem [19]. State-of-the-art approaches
for CPPs use heuristic search and weighted model counting
[20], compilation into metric-planning problems [21], and
relevance-analysis combined with a regular conformant plan-
ner [22]. The last two approaches have some similarities to
our work, in that they use a form of model reduction to make
the problem more tractable—albeit a different type of reduc-
tion than the one we propose. Moreover, our formulation
attempts to maximize some notion of utility, while typical
CPPs focus on guaranteeing goal reachability.

III. PROBLEM FORMULATION

In this section, we describe the mathematical framework
used in this work: a special type of Markov Decision Process
(MDPs) called Stochastic Shortest Path Problems (SSPs).
We then give a high-level description of the search and
rescue scenario that is the focus of this work and its formal
description as an SSPs.

A. Stochastic Shortest Path Problems

An SSP is a tuple 〈S,A, T , C, s0,G〉, where S is a finite
set of states; A is a finite set of actions; T (s′|s, a) is a
stationary transition function specifying the probability of
outcome state s′ when action a is executed in state s; C(s, a)
is the positive cost of executing action a in state s; s0 ∈ S
is a given start state; and G ⊂ S is a set of absorbing goal

states. Starting in state s0, the objective is to reach one of the
goal states while minimizing the expected cumulative cost.

An optimal solution to an SSP can be represented as a
policy π∗ that maps each (reachable) state to an action,
π∗ : S → A. The well-known Bellman equation defines a
value function over states, V ∗(s), from which the optimal
policy π∗ can be extracted:

V ∗(s) = min
a

[C(s, a) +
∑
s′∈S
T (s′|s, a)V ∗(s′)] (1)

B. Search and Rescue Scenario

In the search and rescue problem a robot must explore an
environment described by a known map, with the goal of
finding and rescuing an unknown number of victims within
some time limit Tmax. The robot is given a set of L locations
that potentially contain victims, and it starts execution at
another special location called BASE. Two types of victims
can be present: ambulatory victims are those that can move
with the robot’s assistance, while non-ambulatory victims
cannot be moved and they must receive treatment on the spot.
Additionally, the environment can contain hazards, which
must be cleared by taking them to a designated location.

This problem can be formulated as an SSP. States
are defined as tuples (l, t, 〈b1, b2, ..., bL〉), where
l ∈ {BASE , 1, ..., L} represents the robot’s location, t
is the time elapsed since the robot started execution
(measured in some discrete units) and 〈b1, b2, ..., bL〉 is a
vector representing the robot’s knowledge about objects
present in the environment (victims or hazards). Every bi
can have one of five possible values: unknown, vict-amb,
vict-non-amb, hazard and nothing; we denote the set of these
values as O. The initial state s0 is defined by l = BASE ,
t = 0 and ∀1≤i≤Lbi = unknown .

The robot can choose between 4 different types of actions:
• MOVE to any location l such that bl 6= nothing .
• EVACUATE an ambulatory victim at the robot’s location

by moving the victim to BASE.
• TREAT a non-ambulatory victim at a specified location.

The robot moves to BASE, picks up medicine and brings
the medicine back to the victim at the specified location.

• DECONTAMINATE a hazard at the robot’s location by
moving it to BASE.

With the exception of MOVE actions, all actions are
deterministic and, after execution, the object that they act
on (victim/hazard) is ignored for the remaining of execu-
tion. On the other hand, in the case of MOVE actions,
assuming perfect sensing, there is uncertainty about what
the robot will observe upon reaching the target location.
This uncertainty is described by a size L × 4 matrix Pobs

specifying, for each location, the probability that it contains
an ambulatory victim, a non-ambulatory victim, a hazard or
nothing. The underlying assumption is that the probability
of location l containing a victim/hazard is independent from
the probabilities of other locations containing victim/hazards.
Accordingly, the transition function for moving to location l
is defined so that, for each x ∈ O it generates a successor

with probability Pobs[l, y], where y is the column in matrix
Pobs corresponding to observation x.

Regarding the time increments, each action a has some
time length ∆Ta associated with distance traveled as well
as the time invested in picking up victims/hazards. That is,
for any action a taken at time step t, the resulting state will
have time t′ = t + ∆Ta. After time t′ > Tmax the robot is
not allowed to take any more of its normal actions. To avoid
the resulting planning dead-end, the robot is given a special
action, END, that leads to an absorbing goal state at no cost.

The cost of all actions is directly related to the time
elapsed since the robot started operation. We reward the
robot for rescuing victims and clearing hazards as quickly
as possible and there is no penalty directly associated to
moving; that is, there are no costs associated with factors
such as energy consumption. Therefore, the cost of MOVE
actions is set to 0, while the cost of any other action a taken
at time t is (t+ ∆Ta)− Tmax −Ra if (t+ ∆Ta) ≤ Tmax,
and 0 otherwise; Ra is a constant reward associated with
the type of action the robot executed. In other words, the
later the robot completes a rescue/decontamination action,
the higher the cost incurred for that action. Note that under
this formulation action costs are always negative, so the robot
has an incentive to take rescuing/decontamination actions in
order to minimize the cost incurred before it ends operation
(the negative-cost formulation is equivalent to maximizing
the reward obtained by rescuing victims early).

IV. SOLUTION APPROACH

Solving SSP is generally intractable, since the size of
the state space increases exponentially with the size of any
compact problem representation. This hinders the use of
SSPs for the highly time-sensitive search and rescue problem.
To address this challenge, in this work we adopt a continual
planning paradigm. Continual planning refers to a variety
of methods for interleaving planning and plan execution in
situations where complete offline planning cannot address
all runtime contingencies [23], [24]. Typically, a continual
planning method does planning on a reduced version of the
original problem so that planning can be done much faster.
If execution progresses beyond this reduced model, the plan
is updated to account for previously unforeseen events, and
execution proceeds using the new plan.

A. Reduced Model

Our continual planning approach is based on the
Mk

l -reduction for MDPs [25]. AnMk
l -reduction divides the

sets of outcomes for each action into two types: primary
and exceptional. Primary outcomes are assumed to occur an
unbounded number of times, while exceptions are assumed
to occur up to some predetermined bound. The state space
is augmented with a counter of how many exceptions have
occurred so far, and the transition function is modified so that
the counter is increased by one if an only if a transition to an
exception occurs. When the counter reaches a predetermined
bound, k, the transition function only allows transitions to

primary outcomes, and the full set of probabilities is redis-
tributed among these. The value l determines the maximum
number of primary outcomes that can be considered for each
action. A more detailed explanation can be found in [25].

At first sight, anMk
l -reduction might seem more complex

than the original MDP. However, a well-chosen reduction
can significantly cut down the size of the reachable state
space (i.e., the states that can be reached from s0), which is
particularly advantageous when using heuristic search MDP
solvers such as LAO* [26] and LRTDP [27].

Note that different MDP reductions are characterized by
two choices: the set of outcomes to label as primary and
the choice of k. In the search and rescue problem, the
set of primary outcomes consists of all outcomes in which
the robot observes nothing after MOVE, while observing
a victim/hazard is considered an exception. Therefore, this
reduced model simplifies the problem by assuming that at
most k victims/hazards are present in the environment.

A common approach in continual planning is to compute
a complete optimal plan for the reduced model and then
apply the resulting plan to the original problem. Execution
of this plan continues until a goal is reached, or until a
state that was outside the reduced model is encountered. In
this case, a new reduced model is created starting at the
current state of execution, this new model is then solved
optimally to produce an updated plan, and execution is
resumed. However, the size of the state space in the search
and rescue scenario is intractably large, even when using an
Mk

l -reduction. Concretely, with L locations, T time steps
and a bound k on the number of victims/hazards, the state
space has size O(TLk2L). For a modest problem size of 10
locations, 20 time steps and k = 1 this is already in the
order of 105 states. Therefore, complete optimal planning,
even with an M1

l -reduction, is still not practical.

B. Hindsight Optimization

We can take advantage of the reduced model by noting
that it drastically reduces the number of possible environment
configurations (usually referred as “worlds”) that the robot
could be working on. In particular, under the assumption
of k victims/hazards the number of possible worlds is in
the order of O(TLk+1), one for each combination of time,
location and set of k locations where victims/hazards can
be. This is drastically smaller than the O(4LTL) worlds that
are possible under the original SSP model, and also much
smaller than the state space of the reduced model. Note
the difference between the number of possible worlds the
robot can be in and the number of possible beliefs about the
world the robot could observe. The large number of beliefs
is the reason why planning optimally for the reduced model
is still intractable; each state in the reduced model represents
a belief about the current world configuration.

The small number of possible worlds resulting from
the reduced model can be leveraged by using hindsight
optimization (HOP) [17]. In HOP, the expected cost of
taking an action in some state is estimated by sampling
worlds that are consistent with the current belief, solving

the resulting deterministic planning problems and averaging
over the results. We can express this approach through the
following equations:

V̂ (s) =
∑
w∈W

P (w|s)V ∗(w) (2)

π(s) = arg min
a

[C(s, a) +
∑
s′

T (s′|s, a)V̂ (s′)] (3)

where W is the set of possible worlds that are also con-
sistent with the current belief state, P (w|s) represents the
probability of being in world w given that the current state
is s and action a was taken, and V ∗(w) is the cost of an
optimal plan for world w. Note that the values V ∗(w) can
be computed very easily because the resulting problem is
deterministic. Moreover, the advantage of using a reduced
model before applying HOP is that for small values of k,
we don’t really need to use sampling, since we can quickly
enumerate all worlds consistent with the current state, and
therefore efficiently compute the average in (2) exactly.

There is one caveat with this method. Hindsight optimiza-
tion assumes that the world becomes completely observable
to the robot immediately after taking an action. This is an
overly optimistic assumption that can, in general, lead to ar-
bitrarily bad plans. Intuitively, the reason is that the approach
ignores the impact of actions that gather information. How-
ever, as our experiments show, this algorithm performs very
well for the search and rescue scenario, possibly because
every action in this problem must be preceded by actions that
gather information (e.g., before rescuing a victim at location
A, the robot must move to location A and gather information
about the objects in that location).

To compute the probabilities P (w|s) we rely on the
independence assumption regarding the object observation
probabilities. Note that the value P (w) depends solely
on the types of objects it specifies at each location. Let
〈w.x1, w.x2, ..., w.xL〉 be the vector describing these objects
and w.yi the column index corresponding to entry w.xi on
Pobs. Then, by the independence assumption we have:

P (w) =

L∏
i=1

Pobs[i, w.yi] (4)

A state s specifies some knowledge about the objects
present in the world. Let 〈b1, b2, ..., bL〉 the belief vector
corresponding to state s and K = {i : bi 6= unknown}. A
world w is said to be consistent with state s iff ∀i∈K, w.xi =
bi. We can compute P (w|s) when w is consistent with s as:

P (w|s) =

∏L
i=1 Pobs[i, w.yi]∑

w′∈W
∏L

i=1 Pobs[i, w′.yi]
(5)

where W is the set of worlds that are consistent with s.

C. Continual Planning

Our complete method, REDHI (Reduction+Hindsight), is
summarized by Algorithm 1. The main idea is to increase the
value of k for the Mk

l -reductions every time an exception

Algorithm 1: REDHI: A continual planning and execution
strategy for solving belief MDPs

input: SSP 〈S,A, T , C, s0,G〉, k, l and Pa

s← s0 while s /∈ G do
1 Obtain action a using (2), where W is the set of worlds

consistent with s under an Mk
l -reduction

2 s← ExecuteAction(s, a)
3 if exception occurs at s′ then

k ← k + 1

occurs during execution. For the search and rescue problem,
this amounts to planning for k more victims/hazards than
what have been observed so far. The set Pa given as part
of the input represents the choice of primary outcomes for
the Mk

l -reduction. As mentioned before, in this work the
primary outcomes are those in which the robot observes
nothing after moving to an unexplored location.

V. EXPERIMENTAL RESULTS

In this section we present an experimental evaluation of
our approach. We first evaluate it on an abstract domain
representation of the search and rescue problem, which
makes it easier to test different environmental configurations
and compare with existing MDP solvers. We then evaluate
the planner on a semi-realistic simulation of the search and
rescue scenario implemented using ROS.

A. Abstract Domain Representation

We implemented an abstract representation of the search
and rescue scenario in C++. A search and rescue problem is
described by a set of locations on the 2D plane, a matrix
of probabilities Pobs, and a value Tmax representing the
maximum number of time steps for robot operation. Since
there is no underlying map, locations are arbitrarily specified
and movement occurs following a straight line between
locations. We assume the robot moves at a constant velocity
v = 5 (with time measured in time steps), so that the time it
takes to move between two locations at distance d is d/v time
steps; we thus have ∆Ta = dd/ve time steps for all MOVE
actions. Additionally, we assume a value of ∆Ta = 4 time
steps for all other actions. The rewards are 0 for EVACUATE,
50 for DECONTAMINATE, and 100 for TREAT.

To evaluate the performance of our approach, we exper-
imented on a set of small problems that could be solved
off-line using an optimal MDP solver (LAO*). We solved
problems ranging from 2 to 6 locations placed randomly
on a square of size 10, with random probabilities for Pobs

and a time horizon of 40 time steps. We generated 10
different problems for each number of locations, and the
plans obtained for each problem were simulated 10,000
times. Table I shows the relative difference between the
expected cost of the policy obtained with REDHI and the
expected cost of the optimal policy, averaged over problems
of the same size. Note that the expected cost of the policies
generated by REDHI are relatively close to the optimal

TABLE I
PERFORMANCE OF OUR CONTINUAL PLANNING APPROACH ON

RANDOMLY GENERATED SEARCH AND RESCUE PROBLEMS.

Locations 2 3 4 5 6
Rel. ∆optimal 0.058 0.137 0.159 0.206 0.282

TABLE II
RUNNING TIME (IN SECONDS) OF BOTH SOLVERS ON

RANDOMLY GENERATED SEARCH AND RESCUE PROBLEMS.

Locations 2 3 4 5 6
of states 837 1.07E4 7.07E4 4.15E5 2.42E6
Time LAO* 0.005 0.136 2.643 35.22 336.66

Time REDHI 0.006 0.057 0.182 0.487 1.022

(< 30% in all cases), although they seem to deteriorate as
the number of locations increases.

The benefit of using REDHI becomes more apparent once
we take into account the run time required to optimally solve
the search and rescue problem. Table II shows the average
run time for an optimal MDP solver to compute a plan for
the same random problems described above. Note the drastic
increase in run time as the size of the problem increases.
The reason is due to the exponential increase in the size of
the state space (also shown in Table II), which increases by
approximately a factor of 7 when the number of locations
increases by 1. However, the running time of REDHI in all
of these case is less than 2 seconds and seems to increase
quadratically with the number of locations.

B. Search and Rescue Robot Simulator

We implemented a semi-realistic virtual simulation of a
simple robotic search and rescue scenario using ROS (Robot
Operating System). The scenario is based on the uBot-5 robot
[12], a small light-weight bimanual mobile manipulator (see
Figure 1). Each arm has four degrees of freedom—two in
the shoulder and two in the elbow. The robot is equipped
with an RGB-D camera with a tilt axis to see the ground
in front of the robot. The simulator is able to model the
robot’s operation using a kinematic model for wheels and
arms motion and a simple vision model for a RGB-D sensor.

We model victims, hazards and medicine as ARcubes—28
cm cubes with unique combinations of Augmented Reality
tags. Then, EVACUATE, DECONTAMINATE and TREAT
actions are equivalent to picking up and placing down an
ARcube. The objects are perfectly observed when present in
the field of view of the robot.

The experimental environment has size 8.7 m × 10.8
m, as is illustrated in Figure 2; the robot is able to move
between locations using a path planner. The robot is given
a maximum of Tmax = 40, where each time step represents
15 seconds for a total of 10 minutes. Time is discretized
as btreal/15c, where treal is the current time measured in
seconds. There are 10 possible locations for victims/hazards
and in every scenario we include 3 non-ambulatory vic-
tims, 3 ambulatory victims and 2 hazards. Note that this
violates the independence assumption for the observation

Fig. 1. The uBot-5 mobile manipulator.

probabilities; however, our experiments suggest the algorithm
performs well even if this assumption is broken. We chose
the observation probabilities so that the expected number of
victims of each type matched the actual number of victims.
That is, we assigned, for all locations, a probability of 0.3
of observing a non-ambulatory victim, 0.3 of observing an
ambulatory victim, 0.2 of observing a hazard and 0.2 of
observing nothing.

The state space for the complete model has more than 4
billion states, thus solving it optimally is clearly impractical.
In our experiments we used an initial value of k = 1 for
the reduced model, as it greatly decreases the size of the
state space and works well in practice, even though this
significantly underestimates the number of objects present.
To see why this value works well, recall that whenever a
victim or hazard is observed, k is increased, allowing REDHI
to plan ahead for additional objects in the environment.

We compute the time taken by each action as
∆ta = ddv e+ th, where d is the distance traveled in meters,
v is the robot’s speed in meters per step and th is the
number of time steps it takes for the robot to pick up and
place down an ARcube (this is ignored for MOVE actions).
We set the values v = 5 (0.33 m/s) and th = 4 (1 min.)
based on empirical observation of the robot’s behavior. The
rewards of all actions are the same as in the abstract domain
representation.

In contrast to the simplified abstract domain representation
and the definition of the transition function for the SSP,
movement between two locations in the simulator can lead
to observe objects at other locations besides the target. Given
the difficulty in modeling this behavior properly—due to the
large number of geometrical factors involved— this supports
the idea that a continual planning approach is the most
appropriate planning choice for this problem.

We compared the performance of REDHI with a greedy
baseline planner. This baseline tries to perform a clearing
action at the location closest to the robot, and if there is no
object that can be interacted with at that location, the robot
moves to the nearest location where the belief is different
than nothing. We performed experiments using 10 different
placements of the 8 objects on the environment. Table III
shows the result of these experiments in terms of the total
reward obtained in each scenario.

Fig. 2. Illustration of the simulation environment used.

The results show that REDHI significantly outperformed
the greedy baseline in 5 out of the 10 scenarios, and was only
outperformed in 1 scenario. The average improvement over
the greedy approach is around 13% and the median is 9.5%.
However, it is worth mentioning that in the only scenario
where REDHI was outperformed, the robot was actually able
to finish treatment on a non-ambulatory victim less than 2
seconds after the 10 minute limit. This suggests that the robot
was overly confident about the time it would take to perform
actions leading, in turn, to a less adequate prioritization. This
is most likely due to inaccuracies in estimated speed and
handling time. On the other hand, out of the 5 cases where
the greedy baseline was outperformed, there was only one
in which the robot could have cleared an additional object
with less than 30 seconds after the 10 minute limit.

In terms of observed behavior trends, the use of REDHI
led the robot to explore several locations before starting to
act on the objects observed. In fact, early in some of the
scenarios the robot chose to explore nearby locations even
in the presence of non-ambulatory victims. The intuition for
this behavior is that with high probability (50%) the robot
expects to see a non-ambulatory victim or hazard at the next
location. In that case, moving the next object to the base, then
picking up the medicine and then treating the non-ambulatory
victim would be faster than treating the victim first (requiring
moving to the base and back) and then moving to clear the
object afterward. However, when the time is close to the limit
REDHI leads to greedier behavior, favoring rescue actions
prioritized according to their immediate rewards.

VI. CONCLUSIONS

In this work we introduced REDHI, an efficient planning
algorithm to solve complex MDPs such as those required
for search and rescue robotics problems. The algorithm is
based on a continual planning framework that combinesMk

l -
reductions for MDPs with a hindsight optimization approach.
Experimental results show that REDHI can obtain near-
optimal performance with negligible planning time and it
compares favorably with a greedy baseline on a simulated
search and rescue robot scenario.

We show how the use of an Mk
l -reduction allows for

all possible configuration to be quickly enumerable, and
thus a hindsight optimization can use the full probability

TABLE III
TOTAL REWARD ACCRUED BY REDHI AND THE GREEDY PLANNER IN 10 DIFFERENT CONFIGURATIONS OF THE SEARCH AND RESCUE SCENARIO.

REDHI 320.55 330.96 372.13 328.49 323.78 322.96 324.41 325.14 274.36 325.81
Greedy 322.96 273.28 372.60 275.66 328.84 223.16 272.31 325.53 326.96 226.00

distribution of world realizations, instead of resorting to
sampling as it is usually done in practice. Moreover, our
continual planning approach incorporates knowledge about
the environment during planning and always plans ahead for
additional exceptions. This increases the coverage of the plan
during execution, without needing lengthy periods of off-line
planning.

Our approach relies on certain independence assumptions
about the joint probability distribution of world configu-
rations. However, we can get around this assumption by
resorting back to sampling-based hindsight optimization.
Note that even in this case, using an Mk

l -reduction is still
appealing, as the number of samples required to solve Eq.
(3) can be reduced significantly.

In future work we would like to extend our approach to
handle human-rescue teams; this extension is non trivial,
as the robot must reason about the human’s behavior and
must make sure that it doesn’t interfere with their operation.
Additionally, we want to extend our approach to handle
the presence of non-perfect observations and localization
problems, which would convert the problem into a Partially
Observable MDP (POMDP), and thus much harder to solve.

VII. ACKNOWLEDGMENTS

This research was supported in part by NSF grants IIS-
1405550 and IIS-1524797 and NASA grant NASA-GCT-
NNX12AR16A. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Aeronautics and Space Administration.

REFERENCES

[1] J. Casper and R. R. Murphy, “Human-robot interactions during the
robot-assisted urban search and rescue response at the World Trade
Center,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 33, no. 3, pp. 367–385, 2003.

[2] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper, M. Quigley,
J. A. Adams, and C. Humphrey, “Supporting wilderness search and
rescue using a camera-equipped mini UAV,” Journal of Field Robotics,
vol. 25, no. 1-2, pp. 89–110, 2008.

[3] R. R. Murphy and S. Stover, “Rescue robots for mudslides: A
descriptive study of the 2005 La Conchita mudslide response,” Journal
of Field Robotics, vol. 25, no. 1-2, pp. 3–16, 2008.

[4] G. Kantor, S. Singh, R. Peterson, D. Rus, A. Das, V. Kumar, G. Pereira,
and J. Spletzer, “Distributed search and rescue with robot and sensor
teams,” in Field and Service Robotics. Springer, 2006, pp. 529–538.

[5] N. Ruangpayoongsak, H. Roth, and J. Chudoba, “Mobile robots for
search and rescue,” in Safety, Security and Rescue Robotics, Workshop,
2005 IEEE International. IEEE, 2005, pp. 212–217.

[6] I. Nourbakhsh, K. Sycara, M. Koes, M. Yong, M. Lewis, and S. Burion,
“Human-robot teaming for search and rescue,” Pervasive Computing,
IEEE, vol. 4, no. 1, pp. 72–79, 2005.

[7] M. Pfingsthorn, B. Slamet, A. Visser, and N. Vlassis, “UvA rescue
team 2006; RoboCup rescue-simulation league,” in Proceedings of the
10th RoboCup International Symposium, 2006.

[8] B. Li, S. Ma, J. Liu, M. Wang, T. Liu, and Y. Wang, “AMOEBA-I: a
shape-shifting modular robot for urban search and rescue,” Advanced
Robotics, vol. 23, no. 9, pp. 1057–1083, 2009.

[9] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. New York, NY, USA: John Wiley & Sons,
Inc., 1994.

[10] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman, “Acting optimally
in partially observable stochastic domains,” in Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI’94), 1994.

[11] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of Markov decision processes,”
Mathematics of Operations Research, vol. 27, pp. 819–840, 2002.

[12] P. Deegan, B. J. Thibodeau, and R. Grupen, “Designing a self-
stabilizing robot for dynamic mobile manipulation,” DTIC Document,
Tech. Rep., 2006.

[13] S. W. Yoon, A. Fern, and R. Givan, “FF-Replan: A baseline for proba-
bilistic planning,” in Proceedings of the 17th International Conference
on Automated Planning and Scheduling (ICAPS’07), 2007, pp. 352–
359.

[14] H. L. S. Younes, M. L. Littman, D. Weissman, and J. Asmuth, “The
first probabilistic track of the International Planning Competition,”
Journal of Artificial Intelligence Research, vol. 24, no. 1, pp. 851–
887, 2005.

[15] F. Teichteil-Königsbuch, U. Kuter, and G. Infantes, “Incremental plan
aggregation for generating policies in MDPs,” in Proceedings of the
9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’10), 2010, pp. 1231–1238.

[16] E. Keyder and H. Geffner, “The HMDPP planner for planning with
probabilities,” The ICAPS 3rd International Probabilistic Planning
Competition (IPPC’08), 2008.

[17] S. Yoon, A. Fern, R. Givan, and S. Kambhampati, “Probabilistic
planning via determinization in hindsight,” in Proceedings of the 23rd
National Conference on Artificial Intelligence (AAAI’08), 2008, pp.
1010–1016.

[18] S. Yoon, W. Ruml, J. Benton, and M. B. Do, “Improving determiniza-
tion in hindsight for online probabilistic planning,” in Proceedings
of the 20th International Conference on Automated Planning and
Scheduling (ICAPS’10), 2010, pp. 209–216.

[19] N. Hyafil and F. Bacchus, “Conformant probabilistic planning via
CSPs.” in Proceedings of the 13th International Conference on Auto-
mated Planning and Scheduling (ICAPS’03), vol. 98, 2003, pp. 205–
214.

[20] C. Domshlak and J. Hoffmann, “Probabilistic planning via heuristic
forward search and weighted model counting.” Journal of Artificial
Intelligence Research (JAIR), vol. 30, pp. 565–620, 2007.

[21] R. I. Brafman and R. Taig, “A translation based approach to probabilis-
tic conformant planning,” in Algorithmic Decision Theory. Springer,
2011, pp. 16–27.

[22] R. Taig and R. I. Brafman, “A relevance-based compilation method
for conformant probabilistic planning,” Models and Paradigms for
Planning under Uncertainty: a Broad Perspective, p. 49, 2014.

[23] M. Brenner and B. Nebel, “Continual planning and acting in dynamic
multiagent environments,” Autonomous Agents and Multi-Agent Sys-
tems, vol. 19, no. 3, pp. 297–331, 2009.

[24] M. E. desJardins, E. H. Durfee, C. L. Ortiz, and M. J. Wolverton,
“Continual planning and acting in dynamic multiagent environments,”
AI Magazine, vol. 20, no. 4, pp. 13–22, 1999.

[25] L. Pineda and S. Zilberstein, “Planning under uncertainty using
reduced models: Revisiting determinization,” in Proceedings of the
24th International Conference on Automated Planning and Scheduling,
2014, pp. 217–225.

[26] E. A. Hansen and S. Zilberstein, “LAO*: A heuristic search algorithm
that finds solutions with loops,” Artificial Intelligence, vol. 129, no.
1-2, pp. 35–62, 2001.

[27] B. Bonet and H. Geffner, “Labeled RTDP: Improving the convergence
of real-time dynamic programming,” in Proceedings of the 13th
International Conference on Automated Planning and Scheduling
(ICAPS’03), 2003, pp. 12–21.

