function rather than a fixed output specification3.

One exception is the Concord system, developed by
Lin et al. [1987]. Concord is a programming language
that supports approximate computations in which the
run-time of the subroutine is controlled by the consumer
of the results. The main design issues involve the run-
time environment structures needed to support flexible
procedure calls. Its development was motivated, like our
compilation scheme, by the problem of optimizing per-
formance given a limited supply of system resources. For
each procedure, a supervisor is used to record values of
the approximate results obtained to date, together with a
set of error indicators. When a procedure is terminated,
its supervisor returns the best result found. Intermedi-
ate results are handled by the caller using a mechanism
similar to exception handling. The handlers for impre-
cise results determine whether a result is acceptable or
not; this decision is local to the caller, rather than being
made in the global utility context that we use. In this
sense, Concord actually performs satisficing rather than
optimization. Concord has several other disadvantages
compared to our approach: it leaves to the programmer
the decision of what quality of results is acceptable; it
does not mechanize the scheduling process but only pro-
vides tools for the programmer to perform this task; and
it does not provide for simple cumulative development
of more complex anytime systems.

5.2 Further work

There is still much system work to be done in order
to implement a complete set of compilation methods
as an integral part of a programming language for any-
time computation. We also need to understand how best
to represent multidimensional, probabilistic and condi-
tional performance profiles, and how to insert monitors
to check the partial results obtained and update the PPs
accordingly.

We are currently extending the framework to cover
the generation and scheduling of anytime actions and
observation actions, both of which are essential for the
construction of autonomous agents. Anytime actions are
actions whose outcome quality improves gradually over
time. For example, moving toward a target in order
to get a better view is an interruptible anytime action.
Aiming a gun at a target is another example of an inter-
ruptible anytime action. In many cases anytime actions
can be implemented by interleaving computation and ac-
tion. Our ultimate goal in this project is to construct a
real-time agent that acts by performing anytime actions
and makes decisions using anytime computation.

References

[Boddy and Dean, 1989] M. Boddy and T. Dean. Solv-
ing time-dependent planning problems. Technical

%In fact, the notion of anytime applies much more broadly,
for example to contracts among economic agents. A crude
version is presented by the model ranges offered by car
and computer manufacturers, where different allocations of
money will obtain different quality of results. We are begin-
ning to investigate the economics literature to see if similar
generalizations have been proposed.

Report CS-89-03, Department of Computer Science,
Brown University, Providence, 1989.

[Dean and Boddy, 1988] T. Dean and M. Boddy. An
analysis of time-dependent planning. In Proceedings
of the Seventh National Conference on Artificial Intel-
ligence, pages 49-54, Minneapolis, Minnesota, 1988.

[Elkan, 1990] C. Elkan. Incremental, approximate plan-
ning: abductive default reasoning. In Proceedings of
the AAAI Spring Sympostum on Planning in Uncer-
tain Environments, Palo Alto, California, 1990.

[Haussler, 1990] D. Haussler. Probably approximately
correct learning. In Proceedings of the Eighth National
Conference on Artificial Intelligence, pages 1101-
1108, Boston, Massachusetts, 1990.

[Horvitz, 1987] E. J. Horvitz. Reasoning about beliefs
and actions under computational resource constraints.
In Proceedings of the 1987 Workshop on Uncertainty
n Artificial Intelligence, Seattle, Washington, 1987.

[Korf, 1988] R. Korf. Real-time heuristic search: new
results. In Proceedings of the Seventh National Con-
ference on Artificial Intelligence, pages 139-144, Min-
neapolis, Minnesota, 1988.

[Laffey et al., 1988]
T. J. Laffey, P. A. Cox, J. L. Schmidt, S. M. Kao
and J. Y. Read. Real-time knowledge based systems.
Al Magazine, 9(1):27-45, Spring 1988.

[Lin et al., 1987] K. J. Lin, S. Natarajan, J. W. S. Liu
and T. Krauskopf. Concord: A system of impre-
cise computations. In Proceedings of COMPSAC 87,
pages 75-81, Tokyo, Japan, October 1987.

[Michalski and Winston, 1986] R. S. Michalski and
P. H. Winston. Variable precision logic. Artificial
Intelligence, 29(2):121-146, 1986.

[Russell and Wefald, 1989] S. J. Russell and E. H. We-
fald. Principles of metareasoning. In R.J. Brachman
et al., (Eds), Proceedings of the First International
Conference on Principles of Knowledge Representa-
tion and Reasoning, Morgan Kaufmann, San Mateo,

California, 1989.

[Vrbsky et al., 1990] S. V. Vrbsky, J. W. S. Liu and
K. P. Smith. An object-oriented query processor
that returns monotonically improving approximate
answers. Technical Report UITUCDCS-R-90-1568, Uni-
versity of Illinois at Urbana-Champaign, 1990.

[Zilberstein, 1990] S. Zilberstein. Compilation of any-
time algorithms. Research Proposal, University of
California, Berkeley, November 1990.



Figure 3: Compilation of a sequence

(since we can use the best solution among the alterna-
tives) and the given amount of time should be allocated
to the component that has higher expected quality. This
is essentially the case studied by Dean and Boddy [1988].
Rather than using a generalized sequence construct and
a particular quality combination function, it might be
appropriate to supply a special construct any for the
case of multiple alternative methods.

4.2.2 Conditional statement

Consider a real-time currency trading program that
uses one of two different trading strategies (A and B) de-
pending on whether interest rate will rise (P). We would
represent this by the conditional statement:

(if P then A else B )

Conditional statements have several variations depend-
ing on whether the condition P is calculated by an any-
time algorithm or whether there is a penalty, over and
above the cost of time, for executing A when the con-
dition is false. Here we analyze the compilation for the
case in which P is a fixed-time algorithm that returns
(after time ¢p) the probability (p) that the condition is
true. We also assume that the overall quality is the qual-
ity of A when the condition is true and the quality of B
when the condition is false. The optimal time allocation
is given by:

o max {pga(z) + (1 -ples(t —tp —2)}

A partially evaluated version of this expression is in-
serted into the ‘object code’, to be evaluated at run-time

when the value of p is known. A PP can be computed
at compile time based on the a prior: value of p.

4.2.3 Loops

Any system that repeatedly performs a complex task
can be implemented using a loop through a sequen-
tial anytime process. Examples include operating sys-
tems, part-picking robots, and network communication
servers. In these cases, an infinite loop is an adequate
model:

(loop < body >)
The time allocation should maximize the utility gain per
unit time, that is, at each iteration we choose x such that:

mmax {Qs(z)/e}
where Qs(z) is the PP of the body of the loop. This
amounts to stopping the sequence when it reaches the
point of contact of the steepest tangent to the PP (fig-
ure 4). Loops with anytime termination tests offer more
complex but very interesting optimization problems.

Q(t)
Ax

X t

Figure 4: Compilation of a loop

4.3 Compiling interruptible algorithms

With interruptible algorithms we cannot simply allocate
a certain amount of time to each component since we do
not know the total computation time in advance. For
example, in the case of the repair system mentioned ear-
lier, if we allocate a certain amount of time to ‘diagnose’
and the execution is interrupted before ‘therapy’ starts,
then there will be no results to report. We therefore have
to interleave the execution of all the components so that
results are generated continuously.

The compilation of interruptible algorithms is solved
by reduction to contract algorithms using Theorem 1.
The idea is to create the best contract algorithm, using
the compilation methods described above, and then cre-
ate an interruptible version from the contract algorithm
using the iterating construction described in the proof of
the theorem.

5 Conclusion

We have presented a method for constructing real-time
systems based on the use of elementary anytime algo-
rithms together with a set of compilation methods to
optimally compose these algorithms. Our method is a
meta-level approach in which the meta-level problem is
limited to scheduling of anytime algorithms. Laffey et al
[1988] claim that “Currently, ad hoc techniques are used
for making a system produce a response within a speci-
fied time interval”. Our approach has several advantages
over current techniques: it achieves optimal performance
not just acceptable performance; it can handle situa-
tions in which resource availability is unknown at design
time; it allows for a wide range of possible run-times and
hence is more flexible; it provides machine independent
real-time modules. Finally, our approach avoids a time-
consuming hand-tuning process associated with the con-
struction of real-time systems because the compilation
methods are mechanized.

5.1 Related work

As mentioned above, there has been considerable work
on designing and using individual anytime algorithms,
both before and after Dean’s coining of the term ‘any-
time’. There has, however, been very little work capi-
talizing on the additional degree of freedom offered by
anytime algorithms — freedom in the very general sense
that the algorithm offers to fulfill an entire spectrum of
input-output specifications, over the full range of run-
times, rather than just a single specification. This free-
dom 1is required by a user with a time-dependent utility



is running up until ¢; p;(S;) is the probability that the
state of the domain will be S; at time ¢). Hence we get:

Uc(A,t) = Z}%(Si) > pad@)U([S;, d))

The value of an algorithm is then defined as the maximal
utility achieved by optimal time allocation, that is:

V(A) = mtaX{Uc(.A, 1)}

Based on this definition we can define an order rela-
tion over anytime algorithms: we say that A; > Ay if
V(A1) > V(Az). This relation replaces the traditional
notion of correctness.

4 Compilation of anytime algorithms

The compilation of anytime algorithms is the process of
constructing an optimal anytime algorithm using any-
time algorithms as components. Creating interruptible
algorithms directly is complicated, because the total
time allocation is unknown in advance. We therefore
start by considering only the construction of contract al-
gorithms and then we extend the results to interruptible
algorithms using Theorem 1.

The compilation methods that we describe in this sec-
tion will be integrated into a programming language for
anytime computation. Qur goal is to develop a compiler
for a language that might be in fact syntactically indis-
tinguishable from simple LISP, but all of whose functions
might in principle be anytime algorithms. We suggest
LISP as the basic language since it is already widely used
for AI applications, it allows the association of objects
(such as PPs) with functions, and its functional nature is
more suitable for the kind of composition of algorithms
that we propose.

In our proposed language, the user simply specifies
how the total real-time system is built by composing and
sequencing simpler elements, and the compiler generates
and inserts code for resource subdivision and scheduling
given only the PPs of the most primitive routines. Fur-
thermore, the flexibility of each function makes possible
richer forms of composition than is normally available
in programming languages; for example, a task can be
solved by interleaving several solution methods until one
produces the answer. The overall performance profile of
the resulting system is computed by the compiler, allow-
ing it to be used as a new building block for still more
complex systems. The following in-flight aircraft moni-
toring system is an example of the kind of program that
our compiler is eventually intended to handle:

(defun monitor ()
(calibrate-instruments)
(if (setq pl (passengers-missing))
(mapc #’(lambda (p) (remove-from-plane
(hunt-for-bags p))) pl))
(wait-for-take-off-permission)
(Loop
(if (setq co (collision-imminent))
(alert-pilot (plan-avoidance)))
(if (setq ep (engine-problems))
(alert-pilot

(plan-repair ep (diagnose ep))))
(if (setq cp (off-course
(determine-current-position)))
(any (alert-pilot cp)
(plan-course-adjustment cp)
(effect-course-adjustment cp)))))

In this program fragment, the only algorithms that
are not anytime are remove-from-plane, alert-pilot,
and off-course. All others could consume arbitrary
amounts of resources, depending on the accuracy and
certainty produced, and hence need to be scheduled ap-
propriately.

4.1 Choosing the right type of PP

Earlier we defined three types of performance profiles the
most informative of which was the probability distribu-
tion profile (PDP). This representation is both expen-
sive to maintain and complicated to compile, especially
in the continuous case. The simplest representation, the
expected performance profile (PEP) is not suitable for
our compilation scheme as explained below. We use per-
formance interval profiles (PIP) that keep the lower and
upper bounds of the quality of results. Assuming that
performance is monotonically increasing, we can com-
pute the quality bounds of a complex algorithm using
the quality bounds of its components.

4.2 Compiling contract algorithms

We analyze first several cases of compilation of con-
tract algorithms — that is, the problem is to produce
a contract algorithm from anytime components (which
can be either interruptible or contract algorithms). The
constructs we consider are certainly not an exhaustive
collection, but serve to illustrate the issues involved in
building the compiler.

4.2.1

We first consider the optimal composition of two any-
time algorithms, .4; and Aj;, one of which feeds its out-
put to the other. The repair system that was described
earlier illustrates this situation. Let ¢; and g9 be the
performance profiles of A; and Ay, and let U*(q1, ¢2)
be the quality combination function, that is, the func-
tion that defines how the quality of the module depends
on the quality of the components. For each allocation
of time, ¢, A; gets z time units and A, gets the re-
maining ¢t — z time units, where z is chosen to maximize
U*(q1(z), q2(t —z)). The performance profile of the com-
pound module is therefore

q*(t) = Jmax, U(q1(z), g2t — )

Sequences

Similarly, in the case of n steps we get:

¢*(t) = max U*(q1(z1), .., gn(zn))

x;=t

Figure 3 shows a problem with two alternative anytime
algorithms that can solve the entire problem (for exam-
ple, two different bin-packing algorithms for the same
van on a single trip). In this case the quality combi-
nation function is the maximum of the two components



2.2 Elementary anytime algorithms

Elementary anytime algorithms are already widely avail-
able, contrary to popular supposition. Many exist-
ing general programming and reasoning techniques pro-
duce useful anytime algorithms: search techniques such
as iterative deepening; asymptotically correct infer-
ence algorithms such as approximate query answer-
ing [Elkan, 1990; Vrbsky et al., 1990], bounded cutset
conditioning (see [Horvitz, 1987]), and variable preci-
sion logic [Michalski and Winston, 1986]; various greedy
algorithms (see [Boddy and Dean, 1989]); iterative meth-
ods such as Newton’s method; adaptive algorithms such
as PAC learning algorithms [Haussler, 1990] or neural
networks; Monte Carlo algorithms for simulating proba-
bilistic models; and the use of optimal meta-level control

of computation [Russell and Wefald, 1989].

2.3 Interruptible vs contract algorithms

As mentioned in section 1, we distinguish between two
types of anytime algorithms. Interruptible algorithms
are those whose run-time need not be determined at the
time of activation. They can be interrupted at any time
to yield results whose quality is characterized by their
PP. Many of the elementary anytime algorithms men-
tioned above, such as iterative deepening algorithms,
are interruptible. Contract algorithms require a specific
time allocation when activated. For example, Korf’s
RTA* [1988] performs a depth-first or best-first search
within a predetermined search horizon that is computed
from the time allocation provided, and can therefore
modeled as a contract algorithm. Although this algo-
rithm can produce results for any given time allocation,
if it is interrupted before the expiration of the allocation
it may yield no results.

Every interruptible algorithm is trivially a contract
algorithm, however the converse is not true. In general,
the greater freedom of design makes it easier to construct
contract algorithms than interruptible ones. The follow-
ing theorem is therefore essential for the compilation of
interruptible algorithms.

Theorem 1 For any contract algorithm A, an in-
terruptible algorithm B can be constructed such that
q5(4t) > qa(t).

Proof: Construct B by running A4 repeatedly with
exponentially increasing time limits. Let the sequence of
run-time segments be 7,27, ..., 27, ..., and assume that
the code required to control this loop can be ignored.

Note also that 2228_1? = 2" — 1. The worst case
occurs when B is interrupted after almost (2" — 1)7 time
units, just before the last iteration terminates and the
returned result is based on the previous iteration with
a run-time of 2?27 time units. Since 22:::} < 4, we
get the factor of 4. If we replace the multiplier of time
intervals by « we get a time ratio of: an_‘”f_ﬁ The
lower bound of this expression is 4, for & = 2, hence the
above sequence of run-times is optimal?.

2This factor can obviously be reduced by scheduling the
contract algorithm on multiple processors. The parallel
scheduling options are non-trivial, and are not discussed in
this paper.

Figure 2: PP of the constructed interruptible algorithm

Note that 7 may be arbitrarily small and should be in
general the shortest run-time for which there is a signif-
icant improvement in the results of A.

Figure 2 shows a typical performance profile for the
contract algorithm A, and the corresponding perfor-
mance profile for the constructed interruptible algorithm
B, reduced along time axis by a factor of 4.

As an example, consider the application of this con-
struction method to Korf’s RTA*, a contract algorithm.
As the time allocation is increased exponentially, the al-
gorithm will increase its depth bound by a constant; the
construction therefore generates an iterative deepening
search automatically.

3 Evaluating anytime algorithms

Traditional algorithms are verified in the context of input
and output predicates specified by the designer. Opti-
mizing performance means simply reducing the execu-
tion time of a correct algorithm. The use of anytime
algorithms in agents requires taking into account the
real-time environment in which they operate and the
utility function of the agent (or its designer). It is as-
sumed that imprecise results have some value depending
on their quality and the utility function of the system.
The following framework, roughly analogous to that of
[Horvitz, 1987], defines precisely what it means to be a
better anytime algorithm; this depends not only on the
PP of the algorithm but also on the domain and utility
function (which are defined by the user).

A utility function is defined over the states of the do-
main: U : § — R.

Given an algorithm A, let [S, q] denote the state of the
domain that is reached by providing results of quality ¢
when the domain is in state S. We can always view
A as a decision making algorithm and the new state is
simply the state resulting from performing the action
recommended by the A.

Now, given the current state Sy and a certain time
period ¢, we want to compute the comprehensive utility
of the results produced by A with computation time ¢.
The problem is that there is uncertainty concerning:

1. The quality of results of A at time ¢.
2. The state of the domain at time ¢.

The probabilistic description of the former is given by the
PP of A, and the probabilistic description of the latter
is given by the model of the environment (we assume
that the environment is not affected by which algorithm



Diagnosis Therapy Repair

(@ (b) (©

Figure 1: Composition of anytime algorithms

by a simple call-return mechanism. However, when algo-
rithms have resource allocation as a degree of freedom,
there arises the question of how to construct, for exam-
ple, the optimal composition of two anytime algorithms,
one of which feeds its output to the other. Consider mak-
ing a repair system from a ‘diagnosis’ component and a
‘therapy’ component. The more time spent on diagno-
sis, the more likely the hypothesis is to be correct. The
more time spent on therapy planning, the more likely
the problem is to be fixed, assuming the diagnosis is
correct. Given the performance profiles of the two sub-
systems (as shown in Figure lab), it is straightforward
to construct the optimal apportionment of resources for
a given total allocation, and hence to construct the op-
timal anytime algorithm for the whole problem (whose
performance profile is shown in Figure 1c).

To summarize, in our approach the user specifies the
structural decomposition of a complex problem into ele-
mentary performance components, each of which can be
a traditional or an anytime algorithm. For example, the
repair system might be specified as:

(defun repair (x)
(apply-therapy x (diagnose x)))

Our system generates an anytime algorithm for the
original problem by scheduling and monitoring the com-
ponents in an optimal way (with respect to a given utility
function). The rest of this paper describes this method
in detail. In Section 2 we define the probabilistic descrip-
tion of the performance of anytime algorithms and exam-
ine their essential properties. In Section 3 we present a
framework for evaluating anytime algorithms within the
context of a given domain and a utility function. In Sec-
tion 4 we explain and demonstrate the task of compiling
anytime algorithms. Finally, Section 5 summarizes the
benefits of our approach and discusses related work and
further work to be undertaken.

2 Anytime algorithms

Anytime algorithms are characterized by their perfor-
mance profile (PP), a probabilistic description of the
quality of results as a function of time. The exact mean-
ing and concrete representation of a PP is implemen-
tation dependent. In this section we define three types
of PP and explain the basic properties of anytime algo-
rithms.

2.1 Performance profiles

A PP maps computation time to a probabilistic descrip-
tion of the quality of the results. The main reason for the
uncertainty concerning the quality of results (especially
with deterministic algorithms) is the fact that the input

to the algorithm is unknown. Therefore, a PP should
always be interpreted with respect to a particular prob-
ability distribution of input.

Given an anytime algorithm A, let g4(z,t) be the
quality of results produced by A with input z and com-
putation time ¢; let g4(¢) be the expected quality of re-
sults with computation time ¢; and let p4 ;(¢) be the
probability (density function in the continuous case) that
A with computation time ¢ produces results of quality q.
A complete description of the performance of A is given
by the following definition:

Definition 2.1 The performance distribution pro-
file (PDP), of an algorithm A 1is a function
Dag : RT — Pr(R) that maps computation time to
a probability distribution of the quality of the results.

In some cases the summation over all possible inputs
may produce too wide a range of qualities and the infor-
mation provided by the PP may be too general. In that
case we use conditional PPs by partitioning the input
domain into classes and storing a separate PP for each
class (this partitioning is done using any attribute of the
input, such as size or a complexity measure).

Definition 2.2 The expected performance profile
(PEP), of an algorithm A is a function E4 : Rt — R
that maps computation time to the expected quality of the
results.

Note that E4(t) = Zq pa(9)g = >, Pr(z)qa(z,t).
This is exactly what Dean and Boddy [1988] used as a
performance profile.

Definition 2.3 The performance interval profile
(PIP), of an algorithm A is a function I4 RT —
R x R that maps computation time to the upper and
lower bounds of the quality of the results.

Note that if 74(¢) = [L,U] then Vo : L < qa(z,t) < U.

The quality of results described by a PP is measured
in one of the following ways:

1. Certainty — Probability of correctness determines
quality (e.g. randomized algorithms for primality
testing).

2. Accuracy - Error bound determines quality (e.g.
Newton’s method).

3. Specificity — Amount of detail determines quality
(e.g. hierarchical diagnosis).

While accuracy is typically used to measure quality
in numerical domains, and specificity in symbolic do-
mains, the former can be seen as a special case of the
latter; an inaccurate numerical solution is very specific
but incorrect, and could be mapped to an equally useful,
correct statement that the solution lies within a certain
interval. Anytime algorithms can also have multidimen-
sional quality measures, for example PAC algorithms for
inductive learning are characterized by an uncertainty
measure é and a precision measure e.



To appear in Proceedings of the 12th International Joint Conference on Artificial Intelligence

August 24-30, 1991, Sydney, Australia

Composing Real-Time Systems

Stuart J. Russell and Shlomo Zilberstein
Computer Science Division
University of California

Berkeley, California 94720 U.S.A.

russell@colditz.berkeley.edu

Abstract

We present a method to construct real-time
systems using as components anytime algo-
rithms whose quality of results degrades grace-
fully as computation time decreases. Introduc-
ing computation time as a degree of freedom
defines a scheduling problem involving the ac-
tivation and interruption of the anytime com-
ponents. This scheduling problem is especially
complicated when trying to construct inter-
ruptible algorithms, whose total run-time is un-
known in advance. We introduce a framework
to measure the performance of anytime algo-
rithms and solve the problem of constructing
interruptible algorithms by a mathematical re-
duction to the problem of constructing con-
tract algorithms, which require the determi-
nation of the total run-time when activated.
We show how the composition of anytime algo-
rithms can be mechanized as part of a compiler
for a LISP-like programming language for real-
time systems. The result is a new approach
to the construction of complex real-time sys-
tems that separates the arrangement of the per-
formance components from the optimization of
their scheduling, and automates the latter task.

1 Introduction

Our objective in this research has been to develop and
automate a methodology for the construction of utility-
driven, real-time agents. A real-time agent is an agent
whose utility function depends on time. For example,
a utility function defined as the number of widgets as-
sembled per hour depends on time; a robot designed to
maximize this utility function is a real-time agent. Simi-
larly, problems such as chess-playing, reentry navigation
for a space shuttle, financial planning and trading, and
medical monitoring in an intensive care unit have util-
ity functions that depend on time, and therefore require
the construction of real-time systems. This approach
generalizes the traditional view of real-time systems as
systems that can guarantee a response after a fixed time
has elapsed [Laffey et al., 1988], in that deadlines can be
expressed by a sharp drop in the utility function.

shlomo@bastille.berkeley.edu

We show in this paper how to construct real-time sys-
tems using anytime algorithms! as basic blocks. Any-
time algorithms are algorithms whose quality of re-
sults degrades gracefully as computation time decreases,
hence they introduce a tradeoff between computation
time and quality of results. The algorithm’s perfor-
mance profile (PP) gives a probabilistic description of
the quality of results as a function of time (we define and
generalize this notion in section 2). For example, con-
sider a hierarchical diagnosis algorithm that recursively
performs a test to identify the defective component of
an assembly. This algorithm can be interrupted at any
time to produce a partial diagnosis whose quality can be
measured by the level of specificity. By translating the
quality of results into a utility measure that takes into
account the time needed to produce these results, we
can compute the optimal amount of time that should be
allocated to diagnosis, after which a complete defective
component should be replaced rather than being further
analyzed. A similar technique was used by Boddy and
Dean [1989] for solving a real-time path planning prob-
lem and by Horvitz [1987] for real-time decision making
in the health care domain.

An important distinction that has to some extent been
ignored in the literature should be made between inter-
ruptible algorithms and contract algorithms. Interrupt-
ible algorithms produce results of the ‘advertised qual-
ity’ even when interrupted unexpectedly; whereas con-
tract algorithms, although capable of producing results
whose quality varies with time allocation, must be given
a particular time allocation in advance. If a contract
algorithm is interrupted at any time shorter than the
contract time it may yield no useful results. An impor-
tant result of this paper, given in section 2, shows that
there is in fact a simple reduction from interruptible al-
gorithms to contract algorithms.

In this work we extend the use of anytime algorithms
to the construction of complex real-time systems. It is
unlikely that a complex system will be developed by im-
plementing one large anytime algorithm. Systems are
normally built from components that are developed and
tested separately. In standard algorithms, the quality of
the output is fixed, so composition can be implemented

!Dean and Boddy [1988] coined the term “anytime algo-
rithm” in their paper on time-dependent planning.



