
Challenges in Finding Generalized Plans
Siddharth Srivastava and Neil Immerman and Shlomo Zilberstein

Department of Computer Science
University of Massachusetts,

Amherst, MA 01003
{siddharth, immerman, shlomo}@cs.umass.edu

Abstract

We present a simple and precise definition of generalized
planning together with five natural dimensions of quality for
measuring any generalized plan. We argue that no existing
approach excels in all these dimensions.
In the remainder of the paper we present a new approach to
generalized planning that addresses all five of these dimen-
sions.

The Problem of Generalized Planning
Over the years, many researchers have addressed the prob-
lem of coming up with a ”general plan” that solves many
different planning problems. Methods for doing so have
included, among others, indexing and cataloging observed
plans, annotating previously observed action sequences for
future use, theorem proving, boolean satisfiability, etc. All
of these approaches can be understood as developing gen-
eralized plans which “efficiently” map problem instances to
“good” concrete, deterministic plans for solving them. This
leads us to the following natural definition:
Definition 1 A generalized plan is an algorithm, G, that
maps problem instances, i, to a sequence of actions, s that
solves i. We call the concrete plan s = G(i) the instantia-
tion of the generalized plan, G, for instance i.
A classical planner is the simplest form of a generalized
plan. On the other hand, an algorithm, for instance the “Un-
stack” algorithm in blocks world for moving all blocks to
the table, is a very specific generalized plan which produces
output plans for the problem instances that it can solve much
more easily than a classical planner:

while(∃b(clear(b) ∧ ¬on-table(b)) : moveToTable(b)

For this particular generalized plan, it is also very easy to
test whether it can solve a given problem instance: the goal
should be to have all blocks on the table.

In finding generalized plans, any approach needs to ad-
dress some common challenges:

1. Complexity of checking applicability
2. Complexity of plan instantiation
3. Quality of the instantiated plan
4. Domain coverage
5. Complexity of computing the generalized plan
The most fundamental of these are problems of designing
an efficient applicability test and computing an instantiated
plan.
Complexity of checking applicability A generalized plan
can be designed to proceed in one of two ways when given

an input problem instance: (1) conduct a pre-designed appli-
cability test to determine if an instantiation will be possible,
and if so, proceed to find it, or, (2) directly attempt an in-
stantiation. The problem with the second approach is that
instantiation can be an expensive and wasteful operation if
the generalized plan cannot actually solve the given prob-
lem instance. While the first approach is desirable, it is of-
ten very difficult to construct an applicability test; the ideal
situation would be to have a linear time applicability test.

Traditional approaches to finding generalized plans sel-
dom offer applicability tests. KPLANNER(Levesque 2005),
as an exception, provides a partial test: within the user-
requested bounds on a unique parameter that its input prob-
lem instances are allowed to vary over, its generalized plans
are guaranteed to produce a correct instantiation. Ap-
proaches like case-based planning (Spalzzi 2001) incur large
costs of applicability and instantiation while retrieving and
adapting potentially applicable previously observed plans;
modern approaches like DISTILL (Winner & Veloso 2003)
also do not provide applicability tests.
Complexity of plan instantiation Plan instantiation rep-
resents the actual process of constructing a concrete, deter-
ministic plan that can solve a given problem instance. For
problems that require observations such as those of con-
ditional planning, generation of the sequence s can be in-
terleaved with its execution. In this form of plan instanti-
ation, successive actions in s are generated by the gener-
alized plan after taking the available observations into ac-
count. The complexity of plan instantiation distinguishes
generalized plans like Unstack above, with plan instantia-
tion time quadratic in the number of blocks (or better if lists
of topmost blocks are maintained), from classical planners
whose worst-case complexity of plan instantiation is expo-
nential in the number of objects.
Quality of the instantiated plan The quality of instan-
tiated plans produced determines the relative usability of a
generalized plan. Ideally, instantiated plans should be op-
timal according to a measure like the number of actions in
the plan or its makespan. Again, determining how well or
poorly a generalized plan’s instantiations perform is not al-
ways easy to determine, and most approaches focus on find-
ing any working instantiation.
Domain Coverage Another important factor determining
the quality of a generalized plan is the set of distinct prob-
lem instances (i.e., requiring distinct operator sequences as
solutions) of interest that it solves, or its domain coverage.
Concrete plans produced by classical planners actually score
very well as generalized plans on all the factors discussed so
far, except that they typically work for only one problem in-
stance. This aspect of increasing the domain coverage of

43

a generalized plan is in fact the single most focused aspect
among all the approaches to generalized planning developed
so far, and the original motivating factor behind the devel-
opment of these approaches (Fikes et al. 1972). Conditional
plans cover larger possible problem instances than classical
plans. However, as we discuss below, their coverage is typ-
ically limited because conditional plans tend to grow very
large.
Complexity of computing a generalized plan Condi-
tional planning produces generalized plans with clear ap-
plicability tests (by definition, they solve all instances of
the provided initial belief state) and are easy to instanti-
ate. However, the decision tree structured representations
that they use for expressing solutions can grow exponen-
tially with every unknown predicate tuple, making plans in-
herently more difficult to find. Plan representation thus be-
comes an important factor when considering the complexity
of deriving a generalized plan itself. Approaches like DIS-
TILL, KPLANNER, and BAGGER2 (Shavlik 1990) mitigate
this cost by constructing plans with loops that can instanti-
ate into much larger concrete plans.

The five factors discussed above determine the quality of a
generalized plan. While various approaches have addressed
different subsets of these factors, there are none that address
all of them. In the sequel, we describe such an approach.

Our Approach
We use three-valued logical structures to represent poten-
tially infinite sets of problems states containing a poten-
tially unbounded number of objects. We compute gener-
alized plans by merging generalized versions of concrete
plans. Loops in these generalized plans allow them to handle
problems of unbounded size. For a large class of problems,
we can automatically determine which instances the current
generalized plan can solve. Furthermore, for an incomplete
generalized plan, we can then automatically generate an un-
solved instance, solve this with a classical planner, general-
ize the resulting solution, and, finally, extend the generalized
plan by incorporating the new solution.

Running Example In the rest of this paper, we will use the
recycling problem as a running example: a recycling robot
must pick up objects from a set of bins, perform a sensing
action to determine recyclability of the drawn object, and
store it in an appropriate container.

Formal Model
We represent states of a domain as traditional (two-valued)
logical structures over a domain-specific vocabulary of pred-
icates. A state thus consists of a universe of objects, and for
every predicate, a set of object-tuples satisfying it. Domains
may include first-order integrity constraints that must be sat-
isfied in all instances of the domain. We use the terms “state”
and “structure” interchangeably.

Each action is specified as a first-order formula defining
its precondition, and a set of update formulas defining the
new value of each predicate. Equation 1 shows the update
formula for predicate pi where ∆+

i (∆−i) specify when pi(x̄)
will be changed to true (false) by the action.

p

Sa

g

b

bin

obj; isGlass

obj; isPaper

in

in

S1

1b

2b

bin obj; isGlass

g
in

1b

obj; isGlass

g

2b

bin

S2

3b

1p
1p

2p

obj; isPaper

2p

obj; isPaper

bin

in

bin

bin

obj; isPaper

in

in

in

obj; isPaper

Figure 1: Abstraction for representing belief states

p′i(x̄) := (¬pi(x̄) ∧∆+
i) ∨ (pi(x̄) ∧ ¬∆−i) (1)

This first order representation of planning is very standard
from a logical point of view and can be easily translated to
frame axioms for actions and to successor state axioms in
the situation calculus. However, instead of using theorem
proving to derive the effects of an action, we use the much
more efficient method of formula evaluation on structures.
Example The recycling problem can be mod-
eled using the following vocabulary: V = {bin1,
visited1, object1, collected1, empty1, container1, forPaper1,
forGlass1, in2, isPaper1, isGlass1, robotAt1}. An ex-
ample structure, S, can be described as follows:
the universe, |S| = {b, o, c1, c2}, binS = {b},
objectS = {o}, containerS = {c1, c2}, forPaperS = {c1},
forGlassS = {c2}, inS = {(o, b)}, isPaperS = {o},
robotAtS = {b}, visitedS = {b}. We omit the predicates
not satisfied by any tuples.

Integrity constraints for the recycling domain would in-
clude among others the formula ∀uvw(in(u, v)∧in(u,w)→
(v = w∧(bin(v)∨container(v)))) meaning that each object
can be in at most one bin or container.

To keep the presentation of the running example very sim-
ple, we assume here the artificial integrity constraint that no
bin contains more than one object. The goal condition is that
all bins are empty: ∀x(bin(x) → empty(x)). The precondi-
tion and updates for the action collect(o, c) are:

(isGlass(o) ↔ forGlass(c)) ∧ container(c) ∧
∃b(bin(b) ∧ in(o, b) ∧ robotAt(b))

in′(u, v) := (in(u, v) ∧ u 6= o) ∨
(¬in(u, v) ∧ u = o ∧ v = c)

empty′(u) := empty(u) ∨ in(o, u)
collected′(u) := collected(u) ∨ o = u

Definition 2 (Generalized Planning Problem) A general-
ized planning problem is a tuple 〈VA,K, I, φg〉, where V
is the vocabulary of predicates, A a set of action operators,
each consisting of preconditions and predicate update for-
mulas, K is a set of integrity constraints expressed in first-
order logic, I is a set of initial states (i.e., the “problem in-
stances”), and φg is the common goal formula.

State Abstraction Using 3-valued Logic
We represent belief states as in Srivastava et al. (2008b),
which in turn is based on the abstraction methodology of

44

TVLA (Three Valued Logic Analyzer), a system for the
static analysis of programs (Sagiv et al. 2002). We represent
potentially infinite sets of similar concrete structures using
an (abstract) 3-valued structure, where the truth value of a
tuple being in a relation may be 1 (present), 0 (not present),
or 1

2 (perhaps present). The universe of an abstract structure
may include summary elements, each of which denotes an
arbitrary non-zero number of objects. We draw summary el-
ements using double circles; relations with truth value 1

2 are
drawn using dotted edges, those with truth value 1 are drawn
using solid edges and those with truth value 0 are not drawn.

For example, in Fig. 1 the abstract structure Sa contains
two summary elements, b, p. Intuitively, Sa represents (or
“embeds”)1 any concrete structure that contains one or more
non-empty bins, (since empty is not written it is false), one
or more paper objects, and one glass object. Since concrete
structures must satisfy the integrity constrains, we know that
each bin contains exactly one object and no object is in more
than one bin. Two structures represented by Sa are drawn
at the top of Fig. 1. The set of all concrete states repre-
sented by Sa is denoted γ(Sa). Recall that all states of a
domain are required to satisfy the integrity constraints, I.
Thus, γ(Sa) = {S |Sa w S;S concrete; S |= I}.

Given a domain, we choose a set, A, of unary predicates
to be the abstraction predicates. (All the unary predicates in
our examples are abstraction predicates.) We define the role
of an element of a structure to be the set of abstraction pred-
icates it satisfies (in Fig. 1, the role of p is {obj,isPaper}).

The canonical abstraction of a concrete structure, S#, is
the least general abstract structure S that represents S# and
has definite truth values for each abstraction predicate (Sa-
giv et al. 2002). This is computed simply by collapsing all
elements of each role to one element of that role. The col-
lapsed element is a summary element if there were multiple
elements with that role in S#. Truth values of tuples involv-
ing summary elements in S are the most specific general-
izations of the truth values of tuples they represent in S#.
(In Fig. 1 Sa is the canonical abstraction of S1, and of S2.)
Maintaining a set of abstract structures is an efficient way
to model belief states with uncertainty in object quantities.
Note that even though they typically represent infinite col-
lections of concrete states, each canonical abstract structure
contains at most 2a elements where a = |A|, the number of
abstraction predicates.

Action Application on Belief States
Since we represent belief states using three-valued struc-
tures, we can safely apply the (first-order) definitions of the
action operators directly to the current belief state to derive
the new belief state after the action has been applied. While
doing so, note that the predicate update formulas (Eq. 1)
may lead to some predicates getting truth values of 1

2 .

1Formally we say that structure S represents structure T (equiv-
alently, T is embeddable in S), S w T , iff there is an onto function
f from the universe of T onto the universe of S such that for any
relation symbol Rk, and any elements, t1, . . . , tk of T , the truth
value of R(f(t1), . . . , f(tk)) in S, generalizes the truth value of
R(t1, . . . , tk) in T (1

2
generalizes anything whereas 0 and 1 only

generalize themselves).

Role
i

φ

S
0

Role
i Role

iRole
i

Role
i

φφ

S SS
1 2 3

Role
i

φφ

Role
i

Role
i

S S
1 2

Focus

Coerce

Figure 2: Focus and coerce.

For action, a, and abstract or concrete structure, T , let
τa(T) denote the result of applying action a to T .
Fact 1 If S represents S# then τa(S) represents τa(S#).
(Sagiv et al. 2002).

Fact 1 should give the reader an idea of the power and gen-
erality of the TVLA abstraction methodology. However, to
make this useful, we have to make sure that the belief states
stay as precise as possible as we repeatedly apply actions,
i.e., we want to maintain definite truth values (0,1) when-
ever possible. We sketch this process here (see Srivastava et
al.(2008a) for details).

While the abstraction is convenient for succinctly repre-
senting a large set of possible concrete structures, the de-
signers of TVLA have observed that before an action is ap-
plied, it is useful to view the arguments of the action in more
detail. They thus introduced the focus operation: given an
abstract structure, S, and a formula, φ, with at most one free
variable, focus(S, φ) produces a set of structures S1, . . . , Sk
that represent the same set of concrete structures as S, i.e.,
γ(S) = γ(S1)∪ · · · ∪ γ(Sk), but such that the truth value of
φ is definite in Si, i = 1, . . . k.

Given an action a, we automatically generate a set of rel-
evant focus formulas, φ1, . . . , φt and focus with respect to
all of these. We then apply τa to the relevant structures,
thus preserving precision. We use the TVLA function co-
erce to refine or remove any structures that do not satisfy
the integrity constraints. Finally, we canonically abstract the
result structures to return to the standard, abstract represen-
tation, no longer focusing on φ1, . . . , φt.

In Fig. 2, a simple example of focus is shown, where we
are focusing on the formula φ(x) whose meaning might be
that x is the unique argument on which action a will be ap-
plied. On the top line, structure S0 is shown consisting of a
single summary element where φ has truth value 1

2 . When
we focus on φ the result is the three structures on the right
representing the situations where φ has definite truth values
and holds for all, some, and none of the elements of the uni-
verse, respectively. In the lower line, in the presence of the
integrity constraint saying that φ must hold for a unique ele-
ment of the universe, coerce removes S3 and refines S1 and
S2. This bottom line shows how we use focus and coerce to
draw-out action arguments from their summary elements.
Observation Model and Sensing Actions Conditional
plans deal with uncertainty in predicates in the agent’s be-
lief state using observation or sensing actions (Bonet &
Geffner 2000; Hoffmann & Brafman 2005). In our formu-
lation, sensing actions consist of preconditions and action
updates like regular actions. However, the action-specific
focus formula for a sensing action is the formula that the

45

action needs to sense. The action specific focus opera-
tion for sensing actions thus takes an abstract state and re-
turns a set of more precise belief states corresponding to
the different possible definite truth values of the formula
being sensed. For instance, the recycling domain has only
one sensing action applicable on a drawn-out chosen bin
marked with the new (not in the domain’s vocabulary) ab-
straction predicate chosen: senseType(), with the focus for-
mula ∃x(chosen(x)∧in(o, x)). When applied to an abstract
structure Sa, it returns versions of Sa with different possible
combinations of definite truth values for tuples (, b) being
in the in relation, where b satisfies chosen.

In addition to uncertainty about predicates, we assume
that the agent gets limited information about object quan-
tities after each action: it can only determine whether there
are zero, exactly one, or more than one objects of each role.

Plan Representation and Execution
We represent generalized plans like finite state controllers,
as directed graphs whose nodes are labeled with abstract
structures and edges are labeled with actions. Edge la-
bels may also include conditions (with the default condition
True) under which they may be taken. Execution begins at
one of the pre-defined start nodes whose structure embeds
the agent’s initial belief state. At any stage during the plan
execution a program-counter (initialized with the start node)
labels the active node. The labels of outgoing edges from
each node represent the next possible actions. At each step
in plan execution one of these actions (say a) for the active
node (say n) whose preconditions are satisfied is executed.
A neighboring node (connected to n by an edge labeled a)
whose structure embeds the resulting belief state becomes
the new active node. At any stage, if the next action can-
not be carried out, or if a valid node embedding the result
state cannot be found, the plan execution ends. A general-
ized plan solves a concrete state S# if every allowed execu-
tion of the plan-steps on S# starting at an allowed start node
ends at a state satisfying the goal; the plan solves a belief
state S if it solves every S# ∈ γ(S) from which the goal is
reachable.

Finding Generalized Plans
Given a set of domain-specific actions, integrity constraints,
a goal formula, and an initial belief state Sinit, our objective
is to find a generalized plan solving the initial belief state
Sinit. Alg. 1 provides an overview of our approach. Its in-
put is a set of concrete (linear) example plans and for each,
a concrete member of Sinit that it solves. In the recycling
problem for instance, an input example plan could use the
sensing actions determining each object’s type, but may only
work when the type is found to be “paper” (Fig. 3(a)). Such
example plans can be provided from prior experience. Al-
ternatively, given an abstract structure S0 representing initial
states, they can be generated by existing classical planners
as follows: (a) create a concrete member state S#

0 ∈ γ(S0)
with specific truth values for the unobserved predicates. The
number of universe elements in S#

0 corresponding to a sum-
mary element in S0 can vary; in this paper we used a heuris-

Algorithm 1: Generalizing and merging examples
Input: EgPlans = {π1 : S1, π2 : S2, . . .}
Output: Plan Π
Π← ∅
while there is a πi : Si ∈ EgPlans do

tracei ← generalize(πi, Si)
Merge(Π, tracei)
if EgPlans = ∅ and proactiveMode then

looseEnds = getUnhandledStrucs(Π)
while looseEnds 6= ∅ do

Remove S0 ∈ looseEnds
π0 ←invokeClassicalPlanner(S0)
EgPlans← EgPlans ∪(π0 : S0)

return Π

tic process to add at least six elements in S#
0 for every sum-

mary element in S0. (b) make the appropriate sensing ac-
tions for the unobserved predicates as prerequisites for ac-
tions that use those predicates (c) solve this problem instance
using a classical planner like FF (Hoffmann & Nebel 2001).

Alg. 1 proceeds as follows. An input example plan is first
generalized using a technique developed in prior work (Sri-
vastava et al. 2008b), resulting in a generalized trace t, pos-
sibly with loops (Fig. 3(a,b,c)). This process is summarized
below. Following this step, the Merge algorithm adds seg-
ments of the trace t to relevant points in the existing plan
Π (initialized with an empty graph) while minimizing new
edges (Fig. 3(d,e)). If the domain knowledge determines all
possible effects of actions, then Alg. 1 can provide the ab-
stract structures that are not solved by Π, using the subrou-
tine getUnhandledStrucs as described in the following sec-
tion. Concrete states for each of these structures are then
created and solved by a classical planner as described above
to create additional example plans.

Generalizing Example Plans
The generalize subroutine finds loops in abstract traces of
sample plans (Srivastava et al. 2008b). For clarity, we sum-
marize this process and some key results about its analysis
in this section. We also provide a detailed example incor-
porating our new sensing actions. The input to generalize
is represented as a pair (π, S#

0), where π = (a1, . . . , an)
is a solution plan for the concrete structure S#

0 . The algo-
rithm proceeds as follows: first, π is modified to be appli-
cable to abstract states by replacing its actions’ arguments
by their roles in the corresponding concrete states, giving us
π′. π′ is then applied to an abstraction S0 of S#

0 , keeping
only that abstract structure Si at each step which embeds the
state S#

i obtained by π at that step (this is called “tracing”).
Repeated abstract structures in this trace indicate that certain
state properties have recurred. With an appropriate abstrac-
tion, this means that the same actions can be applied again,
and is taken as a cue for recognizing a loop. The loop is
formed by merging the two abstract structures in the trace.
This process is recursively applied on the remainder of the
trace after the loop. Finally, the trace with multiple loops is
returned.

46

Note that the original tracing process described above re-
jected any structure Si that was not consistent with the result
S#
i in the concrete example. For the purpose of this paper,

these rejected structures are included in the trace as open-
ended nodes with no following actions, and are extracted
by getUnhandledStrucs as a compact representation of situ-
ations that were not handled.
Example Fig. 3(a) shows a plan segment that collects one
object of type paper, moves to the next bin and finds a glass
object. S#

0 is a concrete structure in which more than 2
objects each of type paper and glass have been collected,
and two bins remain to be visited. Two of the actions in
this example, gotoNextBin and senseType, can have multiple
abstract results due to the focus operations described ear-
lier. When applied on an abstract structure with an unknown
number of unvisited bins, the two results of the gotoNextBin
action correspond to whether or not the next bin is the last
unvisited bin, as per the drawing-out operation described
earlier (Fig. 2). The senseType action uses the focus oper-
ation to enumerate the different possibilities for the type of
the object being sensed. Dotted edges in Fig. 3 represent re-
sults of these actions that did not occur in the execution of
the given example plan on S#

0 .
S#

0 ’s canonical abstraction, S0, is identical to S4, the ab-
stract result of collecting another object of type paper. This
is recognized during tracing (Fig. 3(b)) and a loop is formed
by attaching the “collectPaper()” edge to S0 (Fig. 3(c)). The
following action edge (gotoNextBin()) from S#

4 however, is
not merged with the edge between S0 and S1 because S#

5
and its abstraction S5 do not have any elements with the role
of “unvisited bins”, thus differing from S1.

In a fairly general setting (“extended-LL” domains), exact
effects of plans with simple loops are determined by easy-
to-compute linear functions on role-counts, or, the number
of elements with a certain role in a structure. This is done
by determining the conditions because of which a particular
action branch occurs, and then translating these conditions
into conditions on the start structure. For instance, the result
of gotoNextBin on S0 depends on the number of unvisited
bins. Fig. 3(b) shows these conditions, together with auto-
matically computed changes in the counts of various roles
caused due to the actions.

Intuitively, extended-LL domains are those where the
unary predicates of a state are sufficient to determine truth
values of predicates of higher arities involving the drawn-out
objects in that state. The exact relationships between unary
and higher-arity predicates may still differ across different
states. This class of domains captures many interesting plan-
ning problems including the ones discussed in this paper.
For completeness, we repeat the definition of extended-LL
domains below. A formula ϕ is role-specific in S if there
exists a role r such that ϕ(x) =⇒ r(x) in S.

Definition 3 (Extended-LL domains) An Extended-LL do-
main with start structure Sstart is a domain-schema such that
every action a with focus formulas {ψa1 , . . . , ψan

} satisfies
the following conditions: if S is reachable via action up-
dates from Sstart then ∀i, j, we have ψai

role-specific and

either ψai ≡ ψaj or ψai =⇒ ¬ψaj in S.

We conclude this section with a summary of the methods
of analysis of plans with simple, non-nested loops presented
in prior work (Srivastava et al. 2008a; 2008b).
Fact 2 Given a plan with simple loops over an extended-
LL domain, and a structure node S in the plan, we can com-
pute a set of linear inequalities whose solutions are exactly
the achievable role-counts at S. Each of these inequalities
either of the form r0

k+ l ·δk ◦ C, or rfk = l ·δk+C where r0
k

represents the role-count of role rk upon entering the loop;
rfk is the role-count of rk at S; δk is the (automatically de-
termined) net change in rk due to the loop; l is the number
of iterations of the loop; ◦ is < or =; and C is a known
constant.

If initial role-counts and numbers of loop iterations are
left as variables, these inequalities give the preconditions
for reaching a state with a desired role-count, and can be
computed in time linear in the number of actions in the plan.

A detailed proof of this fact along with some other results
from this paper are available at www.cs.umass.edu/
˜siddhart/appendices/genplan09.

Further, action branches in these domains are determined
by linear inequalities on role-counts, and the effect of an
action on the role-count of a structure S is determined by
a linear function of the initial role-counts. The effect of a
loop on role-counts indicates whether or not the loop makes
progress towards the goal.

Merging New Segments Using Open Contexts
Merge (Alg. 2) is a greedy algorithm for combining different
example plans with sensing actions using abstract structures
in generalized traces as representations of possible states,
or contexts in plan execution. Given an example trace ti
and an existing plan Π, Merge uses findMergePoint to find
the earliest structure in ti that is embeddable in a structure
in Π. If successful, findMergePoint returns mpΠ and mpt,
the nodes on Π and ti corresponding to these structures. A
successful search indicates that the example trace’s actions
can be successfully executed starting at mpΠ . However,
these actions may not be different from those following mpΠ
in Π. In order to to minimize the new edges added to Π,
after finding the merge points, Merge conducts a search for
a branch point using the procedure findBranchPoint.

findBranchPoint traverses the edges of ti and Π starting
from the last known merge points mpt and mpΠ, and re-
turns the first pair of subsequent nodes where ti and Π are
not consistent: i.e., either a pair of nodes such that none of
the successor actions in Π match any of the successor ac-
tions in ti, or, a pair of nodes nt, nΠ such that the structure
in Π (at nΠ) does not embed the structure in the trace (at
nt). This gives us a branch point, or a situation where the
trace behaved differently from the existing plan. In gen-
eral, the search for subsequent merge points can range over
all nodes in Π. However, we bias this search towards find-
ing those merge points for which we can find preconditions
as described in the next section. In the current implemen-
tation this is done using a heuristic of first searching in the
list of nodes in Π that were added after the last branch point

47

goToNextBin()S 0

#
S 1

senseType() S 2

preProc−Paper() S 3

collectPaper()
S 4

#
senseType()S 5

#gotoNextBin() S 6

S 0
goToNextBin() senseType()

S 2

preProc−Paper()
S 3S 1

goToNextBin() S 6
senseType()S 5

S 7

S 8

collectPaper()
preProc−Glass() collectGlass() goToNextBin()

S 7

#
S 9

#
S 10

#
S 11

#

S 0
goToNextBin() senseType()

S 2

preProc−Paper()
S 3S 1

S 5 goToNextBin()

S 8

S 6

S 7 S 9

preProc−Glass() collectGlass()
S 10

S 0 S 2
preProc−Paper() S 3S 1 S 0 S 5 S 6

S 5 S 7 S 1 S 8

S 12

{bin} 0Branch:# (S) = 1
{bin} 0Branch:# (S) > 1

(a) Example plan execution:

(e) After Generalization and Merge:

(c) After Finding Loops: (d) Example plan for unhandled structure:

(b) After Tracing:

collectPaper()

senseType()

senseType()

goToNextBin()

senseType()

#{object, isPaper}:+1
#{object}: −1 #{bin}: −1

gotoNextBin() senseType()goToNextBin()

#{bin}: −1
#{bin, visited}: +1

Not role−count classifiable

#{object, isPaper}:+1
#{object}: −1

Not role−count classifiable

#{bin, visited}: +1

collectPaper()

#{object, isPaper}: −1

#{object, isPaper,

#{container, forPaper}: +1

 empty}: −1
#{container, forPaper

 collected}: +1

#{bin,visited}: −1

#{bin,visited,empty}: +1

Figure 3: Generalization and merging process in the recycling domain. Dotted edges represent results that did not occur in the example.

Algorithm 2: Merge
Input: Existing plan Π, eg trace ti
Output: Extension of Π
if Π = ∅ then

Π← ti
return Π

repeat
mpΠ,mpt ← findMergePoint(Π, ti, bpΠ, bpt)
if mpΠ found and not first iteration then

attachEdges(Π, ti, bpt, mpt, mpΠ, bpΠ)
if mpΠ found then

bpΠ, bpt ← findBranchPoint(Π, ti,mpΠ,mpt)

until new bpΠ or mpΠ not found
return Π

in Π, and then searching in the list of all non-ancestors of
the last branch point. The list of non-ancestors is obtained
by running BFS on Π with its edges inverted, and taking the
complement of the obtained set of reachable nodes.

The overall merge algorithm works by attaching nodes
and edges from the branch point to the merge point (bpt,
mpt) in ti between bpΠ and mpΠ in Π. If a branch point
on Π coincides with the next merge point on Π, the Merge
algorithm introduces a new loop (Fig. 3(d,e)).

Given a generalized plan Π with ΠE edges and a new
trace t with tn nodes, the merge algorithm runs in time
O(ΠE · tn).

Loop Effects and Preconditions
In this section we illustrate how to find conditions under
which the execution of certain kinds of nested loops can be

guaranteed to end at a given loop node with given values of
role-counts. We define a simple loop as a cycle of nodes,
and a complex loop as a strongly connected component that
is not a simple loop. A shortcut in a simple loop is a lin-
ear sequence of actions (no branches) starting with a branch
caused due to a sensing action in the loop and ending at any
subsequent node in the loop that is not after a chosen start
node. The start node can be any node, but is common to all
of a loop’s shortcuts (Fig.4).

Simple loops with shortcuts form a very general class–
many cases of “nested” loops can be translated into such
loops without changing their loop variables or their lim-
its. For instance, perhaps the most common “nested”
loop in programming, for i=1 to n do {for j=1
to k do {xyz}}, can be turned into a single loop over
i with an if statement (a branch) resetting j to 1 and incre-
menting i when j = k is reached. Loops of such kind of
any depth, all doubly nested loops and many other so called
“nested” configurations can be translated in this way.

For ease in exposition we require that the start nodes of
all shortcuts in a simple loop occur at the start node, or oth-
erwise, before the end node of any other shortcut, making
shortcuts non-composable in any single iteration of the un-
derlying simple loop. Non-composability allows us to eas-
ily count the simple loops caused due to shortcuts indepen-
dently while computing their overall effects. For instance,
we can view the loop in Fig. 4(b) as consisting of 3 differ-
ent simple loops. Which loop is taken during execution will
depend on the results of sensing actions a3 and a5. In the
recycling problem for example, (Fig. 3(e)), we get two loops
oriented oriented around S1 as the start node.

Let k1 represent the number of times the isPaper branch

48

a 6

a n

a
4

a
4Se

a 6

a n

a
4

a
4

a
5

S6

a 3

a 3

S4

a
5

Se

S

SS

S

S

S

1

2

3

4

5

6

a

a

1

2

3

a
5

a

S

SS

S1

2

35

a

a

1

2S’6

S’4

Chosen start node

(a) A simple loop (b) A simple loop with (non−composable) shortcuts

Figure 4: Simple loops and shortcuts

(corresponding to S2) is taken, and k2, the number of itera-
tions of the loop corresponding to the isGlass branch (with
S7). In each of these two loops, except for the branch at S1,
the conditions for Fact 2 hold, allowing us to determine the
effect of this complex loop on any role r as k1δ

r
1 + k2δ

r
2

where δr1 and δr2 are total changes in r’s role-count due
to the two respective loops. For instance, the change in
role-count for non-empty, unvisited bins r1 = {bin} is
k1(−1) + k2(−1) because each loop makes one more el-
ement with the role {bin} visited; the change for r2 =
{object, isPaper, collected} is k1 because this role’s count
is only changed by the isPaper loop which increases it by 1.
Achievable role-counts rf1 and rf2 at the loop’s start structure
S1 after l iterations are thus r0

1 − k1 − k2 and r0
2 + k1 re-

spectively, where r0
i denote the initial role-counts. However,

this is under the assumption that k1 and k2 iterations of the
two respective loops can be executed completely. We need
to include conditions for ensuring that that action branches
that exit from the loop (leading to S12 or S5) are not taken.
These conditions can be found in a manner similar to that for
simple loops used in deriving Fact 2; in the recycling prob-
lem this amounts to having at least one non-empty unvisited
bin at the start of every iteration (see the branch conditions
in Fig. 3(b)). Because the count of r1 drops by 1 in every
iteration of these loops and the isGlass loop is entered only
after visiting one bin in the first iteration of the nested loop,
this can be expressed as r0

1−k1−k2 > 2. We formalize this
result below; details of the procedure, proofs of Fact 2 and
the results below can be found at www.cs.umass.edu/
˜siddhart/appendices/genplan09.

Lemma 1 Suppose a simple loop with shortcuts in an
extended-LL domain with sensing actions is entered with the
role-count vector r̄0 at loop node Si. Then sufficient condi-
tions under which the execution of the loop will end via an
action branch from a loop node St with the role-count vector
r̄t can be computed.

The time complexity of determining these conditions is
O(s · ne · m), where m is the number of shortcuts, ne is
the number of edges in the simple loop with shortcuts, and s
is the maximum number of roles in any structure in the loop.

Together with the fact that it is possible to find pre-
conditions for reaching a given vector of role-counts at a
given structure in a linear generalized plan (Srivastava et al.
2008a), Lemma 1 gives us the following result:

Theorem 1 Let Π be a plan whose loops are simple loops
with shortcuts in an extended-LL domain with sensing ac-

goToNextBin()

senseType()

apply−PaperPreProc(obj)

apply−GlassPreProc(obj)

senseType()

apply−PaperPreProc(obj)

collect−PaperCont(obj)
collect−Glass−Cont(obj)

apply−GlassPreProc(obj)

goToNextBin()

collect−Glass−Cont(obj)

collect−Paper−Cont(obj)

Recycling

2

4

3

Figure 5: A section of the computed generalized plan for recycling

Plan Gen(1) Gen(1..2) Gen(1..3) Gen(1..4) CFF-soln7
Time(s) 110 129 134 144 262

Table 1: Solution Times (see “Quality of Generalization”)

tions. Sufficient conditions determining the achievable role-
counts for any structure in Π can be computed in time linear
in the number of actions in the plan.

Results
We implemented a prototype version of Merge. In order
to provide accurate expressions of loop effects, structures
within loops in the incremental traces were not considered
during the search for merge points by the subroutine find-
MergePoint; those within loops in the existing generalized
plan were allowed.

We show the result of applying this implementation to the
recycling problem in Fig. 5. In this figure, components of
the plan added due to different examples are drawn with
different edge types and numbered accordingly. The first
example plan only encountered paper objects and collected
them. The second plan was created to handle an instance
of the situation where some bins had glass. The solution
example plan handled one bin with a glass object and col-
lected it in the appropriate container. The Merge algorithm
created a new loop by making the branch point for this ex-
ample the same as the merge point, illustrating how small
examples can be used to identify powerful loops. Example
3 dealt with an unhandled branch caused due to the draw-
ing out of elements from a summary element (last bin was
reached), and example 4 handled the case where the last ob-
ject was of type glass. Analysis of this plan was presented
in the previous section. Note that the plan learned using the
first example solves only n of the 2n+1 − 1 possible prob-
lem instances with at most n bins. The second plan covers
a single specific problem instance. The generalized, result
produced by adding the second example increases the cov-
erage exponentially, solving 2n−1 instances (it assumes that
the last two bins have paper).

We also used this implementation to solve problems with
sensing actions in transport with the chance of packages be-
ing lost. The results showed similar comparisons with con-
ditional planners.
Quality of Generalization We measure the quality of
plans computed by our algorithm on the basis of their do-
main coverage. More specifically, we define Dπ(n) =
|Sπ(n)|/|T (n)| where T (n) is the set of solvable problem
instances of size at most n, and Sπ(n) is the subset of those

49

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
ov

er
ag

e
(D

)

Max Number of Bins (n)

D(n>=8) = 1

D(n>=8) = 0.5

D(n>=8) = 0.25

CFF-soln7
Gen(Eg 1)

Gen(Eg 1+2)
Gen(Eg 1..3)
Gen(Eg 1..4)

Figure 6: Domain coverage of solutions to the recycling problem.

that π solves. For example the recycling problem of size n
must have n/2 each of bins and bin-contents, yielding a total
of 2n/2 instances with different bin contents.

We illustrate the incremental increases in domain cov-
erage discussed above with plots and computation times
for the recycling problem in Fig. 6 and Table 1. For our
plans, this includes the complete time taken to generalize
and merge the input example plans.

Since no other approach can solve these problems due
to uncertainties in object quantities, comparisons with other
approaches were not possible. However, to put this in per-
spective, we compared these results with the domain cov-
erage and execution time for the largest recycling problem
instance (with 7 bins) that we could solve using contingent-
FF (Hoffmann & Brafman 2005), a well-established contin-
gent planner. Given the four example plans for recycling de-
scribed above, the generalization and merging process pro-
duces a near complete solution while taking 45% lesser time
than the time taken by contingent-FF to find a plan (CFF-
soln7) for 7 bins.

Discussion and Conclusions
In this section we summarize how our approach addresses
the challenges described in the introductory section and dis-
cuss its current limitations.
Complexity of checking applicability Our preconditions
are of the form r0

k + l · δ ◦ c, where δ and c are constants and
◦ is = or <. Given an initial role count r0

k, we can easily
determine, for each such inequality if there is a value of l that
satisfies these equations. The number of such inequalities is
of the order of the number of edges in the plan. In extended-
LL domains, our method is guaranteed to be able to compute
these preconditions.
Complexity of computing an instantiation Because the
choice actions only use roles, instantiating our generalized
plans amounts to instantiating an object corresponding to ev-
ery action argument’s role. This can be done at run-time; the
cumulative complexity of instantiating the entire plan is lin-
ear in the maximum number of objects in any encountered
state and the steps in the plan. The cost can be lower in
practice if lists of objects of each role are maintained.
Quality of instantiated plan For recycling, the solution
generalized plan yields optimal instantiated plans for all the
problems that it can solve. In general, the quality of instan-
tiated plans depends on the quality of input example plans.

Domain Coverage Using complex loops our generalized
plans handle infinite classes of problems via a small repre-
sentation; we developed a more detailed metric for domain
coverage in the previous section.
Complexity of computing the generalized plan Our ap-
proach utilizes the advances in classical planners to compute
small classical plans for use in generalization. The use of
loops for handling recurrent scenarios allows us to rapidly
expand the domain coverage without increasing the size and
complexity of deriving the generalized plan itself. Among
the other existing approaches to finding generalized plans,
ours is unique in providing methods for automatically com-
puting preconditions. Apart from lowering the cost of test-
ing applicability, this is the main idea in our approach for
proactively strengthening the generalized plans (Alg 1).

Currently, our approach for determining preconditions is
limited to extended-LL domains with sensing actions. This
restriction is due to our abstraction mechanism which can
handle unary predicates with complete precision. It is much
more challenging to keep appropriate precision when mod-
eling higher-arity predicates, for example, the binary order
of disk sizes in the general towers of Hanoi problem.

Acknowledgments
Support for this work was provided in part by the Na-
tional Science Foundation under grants IIS-0535061, CCF-
0541018, CCF-0830174 and IIS-0915071.

References
Bonet, B., and Geffner, H. 2000. Planning with incomplete in-
formation as heuristic search in belief space. In Proc. of AIPS,
52–61.
Fikes, R.; Hart, P.; and Nilsson, N. 1972. Learning and exe-
cuting generalized robot plans. Technical report, AI Center, SRI
International.
Hoffmann, J., and Brafman, R. I. 2005. Contingent planning via
heuristic forward search witn implicit belief states. In Proc. of
ICAPS, 71–80.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research 14:253–302.
Levesque, H. J. 2005. Planning with loops. In Proc. of IJCAI,
509–515.
Sagiv, M.; Reps, T.; and Wilhelm, R. 2002. Parametric shape
analysis via 3-valued logic. ACM Transactions on Programming
Languages and Systems 24(3):217–298.
Shavlik, J. W. 1990. Acquiring recursive and iterative concepts
with explanation-based learning. Machine Learning 5:39–40.
Spalzzi, L. 2001. A survey on case-based planning. Artif. Intell.
Rev. 16(1):3–36.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008a. Foun-
dations of generalized planning. Technical Report UM-CS-2008-
039, Univ. of Massachusetts, Amherst.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008b. Learn-
ing generalized plans using abstract counting. In Proc. of AAAI,
991–997.
Winner, E., and Veloso, M. M. 2003. Distill: Learning domain-
specific planners by example. In Proc. of ICML, 800–807.

50

