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ABSTRACT

Memory-bounded techniques have shown great promise in
solving complex multi-agent planning problems modeled as
DEC-POMDPs. Much of the performance gains can be at-
tributed to pruning techniques that alleviate the complexity
of the exhaustive backup step of the original MBDP algo-
rithm. Despite these improvements, state-of-the-art algo-
rithms can still handle a relative small pool of candidate
policies, which limits the quality of the solution in some
benchmark problems. We present a new algorithm, Point-
Based Policy Generation, which avoids altogether searching
the entire joint policy space. The key observation is that
the best joint policy for each reachable belief state can be
constructed directly, instead of producing first a large set
of candidates. We also provide an efficient approximate im-
plementation of this operation. The experimental results
show that our solution technique improves the performance
significantly in terms of both runtime and solution quality.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Coherence and coordination, Multi-agent systems

General Terms

Algorithms, Experimentation, Performance

Keywords

Teamwork, Coordination, Multi-Agent Planning, Decision-
Theoretic Planning, Decentralized POMDPs

1. INTRODUCTION

Cooperative multi-agent decision making arises naturally
in many real-world applications such as cooperative robots,
planetary exploration, distributed sensor networks, and dis-
aster response. These problems are difficult or impossible
to solve using centralized decision making frameworks. In
the RoboCup domain, for example, a group of robots with
noisy sensors and inaccurate actuators must cooperate with
each other to play soccer and win the game. With only
partial view of the environment, each robot must reason
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about the choices of the others and how they may affect
the environment. There are many sources of uncertainty in
this problem and the state space is very large. Developing
decision-theoretic techniques that can cope with this com-
plexity is thus an important challenge.

The Markov decision process (MDP) and its partially ob-
servable counterpart (POMDP) have proved useful in plan-
ning and learning under uncertainty. A natural extension of
these models to cooperative multi-agent settings is provided
by the decentralized POMDP (DEC-POMDP) framework,
in which agents have different partial knowledge of the en-
vironment and other agents. The DEC-POMDP framework
is very expressive and can model many practical problems
including the ones mentioned above. Unfortunately, solv-
ing it optimally has been shown to be NEXP-complete [9].
Thus, optimal algorithms [5,14,18,19,26,27] can only solve
very small problems. In recent years, researches proposed
several approaches to improve the ability to solve larger
problems. Examples include algorithms that exploit the
structure of interaction in subclasses of DEC-POMDPs such
as Transition Independent DEC-MDPs (TI-DEC-MDPs) [6]
and Network Distributed POMDPs (ND-POMDPs) [17]. In
other efforts researchers managed to address the complexity
of the general model by considering communication explic-
itly [13,15,21]. However, not all real-world problems ex-
hibit the necessary independence conditions, and communi-
cation is often costly and sometimes unavailable in the case
of robots that operate underground or on other planets.

More general algorithms that compute approximate solu-
tions have shown great promise using either offline meth-
ods [2,3,10, 11,16, 23, 24] or online techniques [12, 22, 29].
Online algorithms must often meet tight time-constraints
and the solution quality highly depends on the heuristics
they use. There has also been substantial work on solving
approximately DEC-POMDPs with infinite horizons [1,7,8].
In this paper, we focus on approximate offline algorithms for
finite-horizon DEC-POMDPs. Currently, the state-of-the-
art solution techniques still suffer from limited scalability.

The approach that is closest to our work is called Memory-
Bounded Dynamic Programming (MBDP) [24]. It combines
top-down and bottom-up components to build and optimize
policies. The top-down component is used to generate a set
of reachable belief states, usually guided by some heuristics.
The bottom-up dynamic programming component is then
used to build a set of possible policies based on the policies of
the previous step. At the end of each step, only the best poli-
cies for the reachable belief states are kept as the building
blocks for the next step. Since the number of policies kept



at each step is bounded by a parameter called maxTrees,
MBDP has a linear time and space complexity with respect
to the horizon. However, the exhaustive backup that MBDP
uses to build a set of possible policies is very inefficient. Sev-
eral successor algorithms have been developed to alleviate
this problem by performing a partial backup with respect
to the observations, by focusing on the most likely observa-
tions in IMBDP [23] or compressing the set of observations
in MBDP-OC [10]. More recently, there have been several
moderately successful attempts to further improve the ex-
haustive backup. One example is PBIP [11] that replaces the
backup step with a branch-and-bound search in the space of
joint policies. Another example is IPG [3] that can prune
useless policies before actually generating them. While these
ideas have produced very significant computational savings,
the resulting algorithms can still handle a relative small pool
of candidate policies (measured by mazTrees). A small pool
of policies is sometimes sufficient to obtain near optimal re-
sults, but in other cases it leads to a significant loss of value.
Our goal in this paper is to introduce an algorithm that can
operate more efficiently with a significantly larger pool of
candidate policies. The objective is to produce better qual-
ity solutions much faster and to improve the overall scala-
bility of approximate DEC-POMDP algorithms in order to
solve large problems.

We present a new algorithm called Point-Based Policy
Generation for DEC-POMDPs, which combines more ef-
ficiently the top-down and bottom-up components of the
MBDP family of algorithms. MBDP produces a bounded
pool of policies that are optimized with respect to a set of
reachable belief states. The key observation behind the de-
velopment of the new algorithm is that the best policy for
each reachable belief state can be constructed directly, in-
stead of producing first a large set of candidates. Thus, we
first construct the joint policies based on a given belief state
and each joint action, then select the best one for the given
belief point. Consequently, we avoid altogether performing
backup for all possible policies or searching over the entire
joint policy space. We prove that when performed optimally,
our procedure is equivalent to what MBDP does, resulting
in the same policy value. We also provide an approximate
implementation of this procedure that can solve the problem
efficiently—much faster than the optimal version. The exper-
imental results show that our solution technique works well.
It significantly improves the performance of existing algo-
rithms in terms of both runtime and solution quality over
several DEC-POMDP benchmark problems.

The rest of the paper is organized as follows. We first in-
troduce the DEC-POMDP model and the MBDP family of
algorithms. Then we describe the main algorithm and ana-
lyze its properties. We then present and discuss the approx-
imation technique. Finally, we examine the performance of
the algorithm on several benchmark problems and demon-
strate its efficiency. We conclude with a summary of the
contributions and future work.

2. DECENTRALIZED POMDPS

We adopt here the DEC-POMDP framework and nota-
tion [9], however our approach and results apply to equiva-
lent models such as MTDP [21] and POIPSG [20].

Definition 1. A finite-horizon Decentralized Partially Ob-
servable Markov Decision Process (DEC-POMDP) is defined

Figure 1: Example of a joint policy for 2 agents.

as a tuple (I, S, {A;},{Q:}, P,O, R,1°) where

e [ is a finite set of agents indexed 1,--- ,n.

e S is a finite set of system states.

. 41 is a finite set of actions available to agent ¢ and
A = X;erA; is the set of joint actions, where
@ = (a1, - ,an) denotes a joint action.

e (); is a finite set of observations available to agent ¢
and O = X;e1§2; is the set of joint observations, where
0= (o1, ,0,) denotes a joint observation.

e P is a Markovian state transition table. P(s'|s,a@) de-
notes the probability that taking joint action @ in state
s results in a transition to state s’.

e O is a table of observation probabilities. O(0]s’, @)
denotes the probability of observing joint observation
0 after taking joint action @ and reaching state s’.

e R:Sx A— Ris areward function. R(s,d) denotes
the reward value obtained from taking a joint action @
in state s.

o b € A(S) is the initial belief state distribution.

In this paper we focus on the general DEC-POMDP prob-
lem with a finite horizon T and start state distribution °.
Solving this problem can be seen as finding policies that
maximize the expected joint reward for b° over T. While
execution is inherently distributed, planning is performed
offline and can be centralized.

In DEC-POMDPs; the policy of an agent is represented
as a tree and a joint policy as a vector of trees, one for each
agent. As shown in Figure 1, each node of the policy tree
is labeled by an action to take and each edge is labeled by
an observation that may occur. This continues until the
horizon T is reached at the leaf nodes. When executing a
policy tree at runtime, the agent follows a path from the
root to a leaf depending on the observations it receives as it
performs the actions at the nodes. The value function of a
joint policy ¢ is defined recursively as follows:

VI (G s) = R(s, @)y P(s']s,@)0(0]s, @)V (g5, s") (1)

where @ is the joint action at the root nodes of §*™* and ¢

is the joint subtree of §¢T! after & is observed. The belief
state used in this paper is a probability distribution over
states b € A(S). The value of a joint policy ¢ for a belief
state b is defined as V(q,b) = > .5 b(s)V(q, s). A survey of
the DEC-POMDP model and algorithms is available in [25].

3. MBDP AND ITS SUCCESSORS

Memory-Bounded Dynamic Programming (MBDP) [24]
was the first algorithm to combine top-down and bottom-up
solution techniques for DEC-POMDPs. In this section we
describe previous work on MBDP and its successors, which



Algorithm 1: The MBDP Algorithm

le « initialize all 1-step policy trees

fort=1toT —1do

—t+1 —

Q' o perform full backup on Q!

S 41 . L. = tfl
Q' «— prune dominated policies in @’

gt — {3
for k =1 to mazTrees do
b < generate a belief using a heuristic portfolio

= t41
q < select the best joint policy in Q' + for b
gt — @ u{q}

return the best joint policy in G7 for b0

are the best existing solution techniques for finite-horizon
DEC-POMDPs. In MBDP, policies are constructed incre-
mentally using bottom-up dynamic programming. A param-
eter, maxTrees, is chosen to ensure that a full backup with
this number of policies for the current step does not exceed
the available memory. At each iteration, a full backup of
the policies from the last iteration is performed. Then, top-
down heuristics are selected from the portfolio to compute a
set of reachable belief states. Finally, the best joint policies
for these belief states are added to the new sets of policies.
After the T'th backup, the best joint policy for the initial be-
lief state is returned. The best joint policy is a joint policy
with the highest value for a certain belief point. The main
procedure is shown in Algorithm 1.

3.1 Backup Operations

The original MBDP uses ezhaustive backups (or full back-
ups) to construct policy trees. This operation generates ev-
ery possible depth-t+1 policy tree for each action and each
possible observation to the root node of some depth-t policy
tree. If an agent has |Q;| depth-t policy trees, |A;| actions,
and || observations, there will be |A;]|Q:|!*! depth-t+41
policy trees. This is inefficient because the number of possi-
ble depth-t+1 policy trees is still exponential in the size of
the observation space. Thus, an improved version of MBDP
(IMBDP) [23] was introduced to use partial backups. It first
identifies the set of most likely observations for every agent
bounded by a predefined number of observations mazObs,
and then performs a backup with only these observations
for each agent. The missing observation branches are filled
up by using local search. Another approach to this prob-
lem is implemented in MBDP with observation compression
(MBDP-OC) [10]. Instead of ignoring observations that are
less probable, MBDP-OC merges certain sets of observations
guided by the value lost. It seeks to reduce the exponential
generation of new policies by forcing different branches of
the new root policies to contain the same subtrees. The ob-
servation branches are merged so as to minimize the loss of
value. Although the methods above can alleviate the com-
plexity of the one-step backup operation, they are still time-
consuming. We show in this paper that there is much to be
gained if the bottom-up policy construction considers the
reachable belief states generated by the top-down heuristics
from the very beginning. The reason is that only the best
policy trees for the reachable belief states are kept at the
end of each iteration and most of them are useless.

3.2 Pruning Techniques

In order to reduce the the number of policy trees, the
MBDP algorithm does pruning by using iterated elimina-
tion of dominated policies after each backup. A policy tree
is dominated if for every possible belief state there is at
least one other policy tree which is as good as or better
than it. This test for dominance is performed using a lin-
ear program. Removing a dominated policy tree does not
reduce the value of the optimal joint policy. Unfortunately,
even with this pruning technique, the number of policy trees
still grows quickly. To alleviate this problem, a new ap-
proach called point-based incremental pruning (PBIP) [11]
was proposed, which uses branch-and-bound search in the
space of joint policy trees instead. PBIP computes upper
and lower bounds on the partial depth-t+1 joint policy trees
using heuristics, and prunes dominated trees at earlier con-
struction stages. The bounds are calculated by considering
the belief states and the depth-t policy trees. PBIP prunes
depth-t+1 policy trees that are outside the upper and lower
bounds, but it does not exploit the reachability of policies.

3.3 Reachability Analysis

Recently, a new method called incremental policy gener-
ation (IPG) [3] was proposed to generate policies based on
a state space reachability analysis. Intuitively, the action
taken and observation seen may limit the possible next states
no matter what actions the other agents perform. This al-
lows only policies that are useful for some possible states to
be retained. This approach may generate a smaller num-
ber of policies without losing value. It first generates all
possible sets of depth-t trees for each observation with a
fixed action, one for each agent. Then, it creates all possible
depth-t+1 trees that begin with the fixed action followed by
choosing any trees from the depth-t set after an observation
is obtained. Omnce all depth-t+1 trees for each action are
generated, it takes the union of the sets and produces the
set of depth-t+1 trees. This approach can be incorporated
with any DEC-POMDP algorithm that performs dynamic
programming backups. While it exploits the state space
reachability, this approach does not consider the reachable
belief states generated by the top-down heuristics.

4. POINT-BASED POLICY GENERATION

As mentioned above, a better way to perform the bottom-
up dynamic programming step is to construct the best joint
policy for each belief state only—avoiding either full or partial
backups. In this section, we propose a new method which
generates directly the best joint policy for each belief state,
namely Point-Based Policy Generation (PBPG).

4.1 Problem Formulation

Given a belief state b, the basic idea is as follow: for every
joint action @, we first find the best sub-policy trees for every
possible observation branch after taking action a; then, we
choose the best joint action for b and build the best joint
policy. Formally, this problem can be defined as follow:

Definition 2. Given a belief state b, a joint action @, depth-

t policy tree sets Q" = (Q4,Q%, -+ , QL) and a value function

Vvt @t x S — R, find mappings &; : % — QF,Vi € I which
maximize the depth-t+1 value function

VIt a,b) = R(@,b) + ) Pr(d,s'a,b)V'(5(0).s) ()

s’,0
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Figure 2: Example of the policy-tree construction process for two agents with two observations: (1) shows
the input, which includes a belief state b, a joint action (a1, a2), and sets of depth-t policy trees represented
by the triangles; (2) shows the best mappings for the given belief state and joint action from each observation
to a depth-t policy tree; (3) shows a joint policy tree built using the mappings.

where 6(3) = (61(01), 62(02), - -
the probability Pr(d,s’|d,b) =
and the reward function R(d,b)

bn(on)) = (qi, qz, L, ah),
(als', @) 3=, P(s|s, a) (s),
>, b(s)R(s, d@).

Il O“

This problem is essentially a subtree selection problem,
where the goal is to choose depth-t subtrees in response
to observations to maximize the depth-t+1 value function
(Equation 2). However, the subtrees must be chosen in a de-
centralized manner. That is, subtree ¢} is chosen based only
on an observation of o; for agent i. Our goal is to choose
mappings or selection rules d; : ; — Q%,Vi € I to maximize
the depth-t+1 value function and build the best depth-t+1
policy trees given the belief b and the joint action &.

With the joint action @ and the best mappings d;,Vi € I,
it is quite straightforward to construct the depth-t+1 policy
trees. For agent i, the depth-t+1 policy tree can be built
by using a; as the root node and assigning the sub-policies
for each observation branch based on §;. Figure 2 shows
an example of the construction process with the resulting
mappings d1 : 01 — ¢3,02 — 1 for agent 1 and d2 : 01 —
q2,02 — qs for agent 2. After the joint policy trees for b
and every joint action are generated, we can find the best
joint policy for the belief state b by choosing the one with
the root nodes of @* = (ai,--- ,a) computed as follows:

a* = argmax;, x Vi@, b) (3)

PROPOSITION 1. For a given belief state b, the joint policy
chosen by the method mentioned above yields the same value
as the one selected by the MBDP algorithm.

PrOOF. Note that the depth-1 policy trees for both meth-
ods are the same with a single node of every possible action.
Assume that the depth-t policy trees for both methods are
also the same. For a belief state b, the MBDP algorithm
first generates all possible depth-t+1 policy trees by exhaus-
tive backup of the depth-t policies and then selects the joint
policy 7*"*! which maximizes the value function

V@) =Y bV @ s @)

where V11 (7*"s) is computed by Equation 1. The method
described above first constructs a set of joint policy trees
which maximize Equation 2 for every possible joint action
and then chooses the joint policy with the joint action com-

puted by Equation 3. Generally, we have
Vi (q*t+17 b) :Z b(s)[R(Sa a+ Z P(Sll‘S? a) -
0(als', &)V (3, )] Eq.4
=>_b(s)R(s, @) + Z [O(a]s', @) -

ZP( s, a) ( NVH(ds,s)

=R(d, b) + Z Pr(0,s'|a,b)V(gt,s’) Eq.2

—VHaD)
where @ is the root nodes of ¢*'** and ¢ is the sub-policy
trees of ¥ for observation branches 6.

Thus, the joint policies selected by both methods yield the

same value for belief state b at depth-t+1. Therefore, the
proposition holds for every depth by induction. [

4.2 Approximate Solution

The key question is how to compute the best mappings
0;,¥1 € I. Note that the number of possible mappings
is (|Q¢**HM! for a fixed joint action @ Therefore, the
straightforward way to enumerate all possible mappings is
very inefficient. Actually, this problem is equivalent to the
decentralized decision making problem studied by Tsitsiklis
and Athans, which has been proved to be NP-hard even for
two agents [28]. In this paper, we propose an efficient ap-
proximate method which solves the problem using a linear
program and produces suboptimal solutions.

The approximation technique uses stochastic mappings in-
stead of deterministic ones. They are defined as follows:

T L x Qi =R Viel.

That is, mi(g!|o:) is a probability distribution of subtrees g;,
given observation o; for agent ¢. Similar to 5 , we denote the
joint stochastic mapping @ = (w1, 72, -+ ,m,). Note that
given b and @, R(d@,b) is a constant in Equation 2. There-
fore, maximizing Equation 2 is equivalent to maximizing the
following function:

VIS, b) = ZPr (6, 5'|a, b)V*(3(6), 5) (5)

With the stochastic mappings, Equation 5 can be rewritten
as follows:



Table 1: The linear program for optimizing =;

Variables: €, 7/ (q![o;)
Objective: maximize e
Subject to:
Improvement constraint:
VLR, b) +e < 3y 5 Pr(6,5]a,b) 3o g mi(afloq) -
m-i(qt;lo-)VE(G?E, s")
Probability constraints:
Voi € Qi, 3 greqr milgtlon) = 1;

Vo; € Q4,q! € QF, mi(qt]oi) > 0.

There are multiple ways to solve Equation 6 and calculate
the solution m;,Vi € I. Our approximate method com-
putes a suboptimal solution by choosing initial parameters
for m;,Vi € I and iteratively optimizing the parameters of
one agent while leaving the parameters of the other agents
fixed, until no improvement is obtained. This process always
terminates after a finite number of iterations if a threshold
of minimum improvement is set. The suboptimal solution
computed in this way can be considered analogous to a Nash
equilibrium where no agent can benefit unilaterally.

To start, each local stochastic mapping m;,¢ € [ is initial-
ized to be deterministic, by selecting a random ¢! € Q¢ with
a uniform distribution. Then, each agent is selected in turn
and its policy is improved while keeping the other agents’
policies fixed. This is done for agent i by finding the best
parameters 7} (g!|o;) satisfying the following inequality:

Vit (7, b) gz Pr(3,s'|@,b)m (gt |oi)m-i(q5|o-) VG, 8)

s',6,q"

where 7(¢/l0-1) = [T,.; m(ablow).

The linear program shown in Table 1 is used to find the
new parameters. The procedure terminates and returns 7
when ¢ becomes sufficiently small for all agents. Random
restarts are used to avoid local maxima.

4.3 The PBPG Algorithm

Once the stochastic mapping m; is computed for agent 4,
q! is selected for observation branch o; according to the dis-
tribution m;(g!|o;). The main steps of PBPG are shown in
Algorithm 2. The number of joint policy trees generated
at each iteration is bounded by (|A|maxTrees), much less
than (|A;|mazTrees' )l produced by the full backup in
the original MBDP. It is worth pointing out that the pol-
icy evaluation is very time-consuming and can easily run
out of memory, especially for large problems. It computes
the value for every joint policy at every state as shown in
Equation 1. Note that the number of joint policies actually
evaluated here is (|A|mazTrees +mazTrees!), not the to-
tal enumeration (|A;|mazTrees)!l. We evaluate the joint
policy for each joint action and prune the dominated ones
at an early stage. This makes the algorithm more efficient.
Efficiency can also be improved by exploiting the sparsity of
the transition matrix, observation matrix and belief vector,
which often have many zero elements. This property can be
used to solve the necessary equations more quickly.

We also use a heuristic portfolio to generate the belief b
at the beginning of each iteration, just as MBDP does. A
heuristic portfolio is a set of heuristics which can be used
to compute a set of belief states. Each heuristic is used to
select a subset of the policy trees. In our implementation,
we use two types of heuristics: the MDP heuristic and the

Algorithm 2: Point-Based Policy Generation
T «— horizon of the DEC-POMDP model
mazxTrees < max number of trees at each step

Ql « initialize and evaluate all 1-step policy trees
fort=1to 7T —1do
Q' — {3
for k =1 to mazTrees do
b <+ generate a belief using a heuristic portfolio
v* — —o00
for @ € A do
7* « compute the best mappings with b,a
¢ < build a joint policy tree based on a, 7*
v « evaluate ¢ by given the belief state b
if v > v* then ¢* «— ¢, v* «— v
B Q’tJrl — Q’t+1 U {7*}
| evaluate every joint policy in @¢+! with Equation 1

(j’*T «— select the best joint policy from QT for b0

return ¢*T

random heuristic. The MDP heuristic is based on solving
the underlying MDP in a centralized manner and executing
the resulting policy to create sample belief states. The ran-
dom heuristic produces random reachable belief points using
random policies. Sometimes, several belief points select the
same policy tree because the sampled beliefs are quite close
to each other. When that happens, we re-sample to generate
different belief points. Unlike MBDP, it is not necessary to
run our algorithm recursively to obtain good results. The
experimental results show significant improvement over all
the existing algorithms simply by using a portfolio contain-
ing the above two simple heuristics in our algorithm.

4.4 Summary and Discussion

To summarize, MBDP does an exhaustive backup for all
depth-t policy trees before selecting a joint policy for each
belief state. IMBDP ignores less-likely observation branches
and MBDP-OC merges observations while minimizing the
loss of value. PBIP prunes depth-t+1 policy trees using
upper and lower bounds at the early stage, and IPG limits
the number of depth-t policies using state reachability.

Unlike these existing algorithms, which try to improve the
performance of the backup operation by limiting the num-
ber of observations or policies, we completely replace the
backup step with an efficient policy generation method. In-
stead of generating a large set of policy trees, our approach
constructs only a small set of possible candidates for each
belief state using an efficient linear program. The number
of policy trees generated for each belief state is bounded by
the number of joint actions.

It is possible to incorporate previously developed meth-
ods with our algorithm, particularly observation compres-
sion and incremental policy generation, to further improve
its performance. Merging equivalent observations and limit-
ing the size of possible subtrees can immediately reduce the
number of variables in the linear program and improve its
scalability. Implementing these improvements, however, is
beyond the scope of the paper and is left for future work.

S. EXPERIMENTAL EVALUATION

We tested our algorithm on the hardest existing bench-
mark problems. PBPG shares the same linear time and



space properties of MBDP with respect to the horizon. There-
fore, our experiments focus mainly on scalability with re-
spect to maxTrees, and the value gains that result from
increasing maxTrees. We compared our results mainly to
PBIP-IPG [3] — the latest algorithm, which has outper-
formed the other existing algorithms such as MBDP, IMBDP,
MBDP-OC and PBIP. The purpose of these experiments is
to show that our algorithm can solve problems with a much
larger number of mazTrees with good runtime and solution
quality. Actually, the maxT'rees parameter presents a good
way to tradeoff between runtime and solution quality, and it
makes it possible to design a contract anytime algorithm for
DEC-POMDPs [30]. The experiments with different values
of mazTrees illustrate the advantage of our algorithm as a
contract algorithm.

5.1 Experimental Setting

In the experiments, we use two types of heuristics — the
random policy heuristic and the MDP policy heuristic. With
the random policy heuristic, the agents act randomly top-
down to the current step and sample a set of belief states.
With the MDP policy heuristic, the agents act according to
a pre-computed MDP policy of the model. For the fairness
of comparison, we used the same heuristic portfolio as the
first recursion of other MBDP-based algorithms (MDP: 45%,
Random: 55%). They run recursively using the complete so-
lution of the previous recursion as a new part of the heuristic
portfolio for the next run. However, as we demonstrate be-
low, the quality of results produced by our algorithm could
be further improved by using a better heuristic portfolio.

We performed re-sampling up to 10 times if the sizes of
both agents’ policies were less than mazTrees. Due to the
randomness of the sampling, we ran the algorithm 10 times
per problem and reported the average runtime and value.
All timing results are CPU times with a resolution of 0.01
second. Many of the parameter settings we used are too
large for PBIP-IPG to be able to produce an answer with a
reasonable amount of time. An “x” in Table 2 means that
the algorithm cannot solve the problem within 12 hours.
As a reference, we also provide for each test problem an
upper bound on the value based on solving the underlying
full-observable MDP (Vampp). Notice that this is a loose
bound [18]. When the results we obtain are close to this
value, we can be sure that they are near optimal. But when
there is a big difference, it is not possible to know how close
to optimal we are. PBPG was implemented in Java 1.5
and ran on a Mac OSX machine with 2.8GHz Quad-Core
Intel Xeon CPU and 2GB of RAM available for JVM. Linear
programs were solved using lp_solve 5.5 1.

5.2 Test Problems and Results

The Meeting in a 3x3 Grid domain [8] is a classical bench-
mark for DEC-POMDP algorithms. In this domain, two
robots navigate on a grid world and try to stay as much
time as possible in the same grid location. We adopted the
version of the problem used by Amato et al. [3], which has 81
states, 5 actions and 9 observations per robot. As shown in
Table 2, our algorithm took much less time than PBIP-IPG
with the same number of maxTrees and got competitive val-
ues. Even with a relatively large number of maxTrees, e.g.
maxTrees=20, our algorithm still ran faster than PBIP-IPG
with mazTrees=3 and produced better value as expected.

1http://lpsolve.sourceforge.net/5.5/

Table 2: Experimental Results (10 trials)

PBIP-IPG
Time [ Value Time

PBPG

maxTrees
[ Value

Meeting in a 3x3 Grid, |S| =81, |O| =9, T = 100

3 3084s 92.12 27.21s 87.01

10 X X 201.50s 93.46

20 b'e X 799.90s 93.90

50 x X 8345.13s 94.79

100 x X 34820.67s 95.42
Vupp = 96.08

Cooperative Box Pushing, |S| = 100, |O| =5, T = 100

\
3 181s 598.40 11.34s 552.79
10 X X 69.12s 715.95
20 X X 287.42s 815.72
50 X X 2935.24s 931.43
100 X X 19945.56s | 995.50

Vuvpp = 1658.25

Stochastic Mars Rover, |S| =256, |O] =8, T =20

3 14947s 37.81 12.47s 41.28
10 X X 59.97s 44.30
20 X X 199.45s 45.48
50 X X 987.13s 47.15
100 X X 5830.07s 48.41

Vyvpp = 65.11

Grid Soccer 2x3, |S| = 3843, |O| =11, T =20
3 [ x [ x ][ 10986.79s | 386.53
Vipp = 388.65

PBPG could solve this problem with maxzTrees=100 while
PBIP-IPG ran out of time with maxzTrees > 10. Note that
this problem has 9 observations, which makes it more diffi-
cult to solve than the following two benchmark problems.
The result for mazTrees=100 was actually near-optimal
considering the loose upper bound Vapp.

The Cooperative Box Pushing problem [23] is another
common benchmark problem for DEC-POMDPs. In this
domain, two agents are pushing three boxes (1 large and
2 small) in a 3x4 grid. The agents will get a very high
reward if they cooperatively push the large box into the
goal area together. This domain has 100 states and each
agent has 4 actions and 5 observations. The results have
been shown in Table 2. With maxTrees=3, our algorithm
ran ten times faster than PBIP-IPG but got competitive
value. As the number of maxTrees increases, the solution
became better as expected. In the experiments, we observed
that with mazxTrees=100, 99% of the iterations would do
re-sampling about 10 times. It means that the heuristic
portfolio has reached its limit to construct different policy
trees when maxTrees=100. The frequent re-sampling in
this case contributed to an increase in the runtime of PBPG.
It is quite likely that 999.53, the highest value we got with
maxTrees=100 in these experiments, is quite close to the
optimal value for this problem with horizon 100.

The Stochastic Mars Rover problem [4] is a larger domain
with 256 states, 6 actions and 8 observations for each agent.
The runtime of PBIP-IPG is substantially larger than in the
previous benchmarks due to the larger state space. We used
in these experiments 7T'=20 because it takes too much time
for PBIP-IPG to solve problems with T=100. The horizon
we used is the same as in the original PBIP-IPG paper [4]. In
contrast, our algorithm scales better over the state space as
well as the action and observation spaces. Surprisingly, our
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Figure 3: Value vs. Runtime for Cooperative Box
Pushing with T'=10. In these experiments, different
algorithms used different numbers of maxTrees.

algorithm can solve this problem rather quickly. Compared
with the results in the Cooperative Box Pushing domain,
runtime did not grow up substantially despite the fact that
there are twice as many states. The main reason is that
the transition and observation matrixes of this problem are
quite sparse. Our algorithm with maxTrees=100 is still
faster than PBIP-IPG with mazTrees=3. Again, the larger
number of maxTrees helps produce better solutions.

To test scalability, we also tried a more challenging prob-
lem introduced in [29], namely Grid Soccer 2x3. This prob-
lem has 3843 states, 6 actions and 11 observations. Cur-
rently, this problem can only be solved approximately by
online algorithms. This is the first time that a problem of
this size is solved successfully by an offline algorithm. Al-
though online algorithms are generally very fast, offline al-
gorithms can often provide higher solution quality. Besides,
online algorithms often require the ability to communicate
at runtime, which may be very costly or impossible in some
domains. Offline algorithms have the added advantage of
producing a coordinated joint policy prior to execution, re-
ducing the need to communicate. In fact, our algorithm
could get a value of 386.53 without any communication,
which is near optimal. In comparison, the leading online al-
gorithm called MAOP-COMM can only produce a value of
290.6 (without considering the cost of communication) while
using communication 14.8% of the time on average [29].

The parameter mazTrees does not only limit the usage
of memory but also provides a tradeoff between the solu-
tion quality and runtime. Intuitively, an algorithm with
larger mazTrees will produce better value but also take
longer time to execute. In our experiments, we tried differ-
ent mazTrees and recoded the runtime and value of each
algorithm for the Cooperative Box Pushing domain with
T=10. As shown in Figure 3, our algorithm got better value
by given the same amount of time. Notice that the MDP up-
per bound [18] (Vapp) of this problem with 7=10 is 175.13.
Thus, our algorithm performs quite well with respect to the
value of the solutions. It is worth pointing out that all the
algorithms we compared have linear time and space com-
plexity with respect to the horizon. We chose a short hori-
zon (T'=10) here to make it possible for the other algorithms
to solve the problem with different maxzTrees (1 to 8 as we
tested, runtime >200s is not shown) in a reasonable amount
of time; otherwise, they would run out of time very quickly.

In Figure 4 we show the results for the Cooperative Box
Pushing problem with different heuristic portfolios. The
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Figure 4: Values with different heuristic portfo-
lios for the Cooperative Box Pushing problem with
T=100, maxTrees=3. The composition of the port-
folio changes gradually from the MDP heuristic only
(left) to the random heuristic only (right).

z-coordinate indicates the frequency in which the random
heuristic is used. The leftmost point (0) indicates that the
random heuristic is not used at all and the MDP heuristic is
used all the time. The rightmost point (1) indicates that the
random heuristic is used all the time and the MDP heuristic
is not used at all. We can see that the best heuristic port-
folio for this domain is obtained at £=0.3. That is, the best
results are obtained when 30% of the policies are selected us-
ing the random heuristic, and 70% using the MDP heuristic.
The default portfolio used in the main experiments is (MDP:
45%, Random: 55%), which is also the portfolio used by the
first recursion of other MBDP-based algorithms. Therefore,
we could actually further improve the performance in Ta-
ble 2 by using a better heuristic portfolio.

6. CONCLUSIONS

We present the point-based policy generation algorithm
for finite-horizon DEC-POMDPs. Similar to previous MBDP-
based algorithms, it also combines top-down heuristics and
bottom-up dynamic programming to construct joint policy
trees for an initial belief state. Our approach also uses the
parameter maxTrees to limit the usage of memory, thus
it shares the same linear time and space complexity with
respect to the horizon. The main contribution is a new
point-based policy generation technique that builds the joint
policies directly at each iteration, instead of performing a
complex backup operation. By using this technique, many
more policy trees can be kept as building blocks for the next
iteration compared to the state-of-the-art algorithms. With
a larger number of candidate subtrees, the solution quality
can be further improved. Even when used with the same
number of mazTrees, our algorithm runs orders of magni-
tude faster and produces competitive values in all the do-
mains we tested. One important characteristic of the new
algorithm is that it scales better over the state space and it
can solve larger problems than currently possible with exist-
ing offline techniques. The experimental results show that
the new PBPG algorithm significantly outperforms all the
state-of-the-art algorithms in all the domains we tested.

In future work, we plan to incorporate other general meth-
ods such as observation compression and state reachabil-
ity analysis into our algorithm to solve even larger prob-
lems. Currently, one limitation of our algorithm is that ev-



ery joint observation must be considered in order to model
the problem as several linear programs. For some prob-
lems with large observation sets, additional techniques will
have to be employed to further improve scalability. We are
also investigating ways to learn the best heuristic portfo-
lio automatically for different domains. The algorithm pro-
posed in this paper eliminates much of the time- and space-
consuming backup operation and opens up new research di-
rections for developing effective approximation algorithms
for multi-agent planning under uncertainty.
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