
Monte-Carlo Expectation Maximization for Decentralized POMDPs

Feng Wu† Shlomo Zilberstein‡ Nicholas R. Jennings†

†School of Electronics and Computer Science, University of Southampton, UK
‡School of Computer Science, University of Massachusetts Amherst, USA

Abstract
We address two significant drawbacks of state-of-
the-art solvers of decentralized POMDPs (DEC-
POMDPs): the reliance on complete knowledge of
the model and limited scalability as the complex-
ity of the domain grows. We extend a recently
proposed approach for solving DEC-POMDPs via
a reduction to the maximum likelihood problem,
which in turn can be solved using EM. We intro-
duce a model-free version of this approach that em-
ploys Monte-Carlo EM (MCEM). While a naı̈ve
implementation of MCEM is inadequate in multi-
agent settings, we introduce several improvements
in sampling that produce high-quality results on
a variety of DEC-POMDP benchmarks, including
large problems with thousands of agents.

1 Introduction
Decentralized partially observable Markov decision pro-
cesses (DEC-POMDPs) offer a powerful model for multi-
agent coordination and decision making under uncertainty. A
rich set of techniques have been developed to solve DEC-
POMDPs optimally [Hansen et al., 2004; Szer et al., 2005;
Aras et al., 2007; Spaan et al., 2011] or approximately [Nair
et al., 2003; Seuken and Zilberstein, 2007; Bernstein et al.,
2009; Wu et al., 2010; Dibangoye et al., 2011; Pajarinen and
Peltonen, 2011b]. However, most existing methods assume
complete prior knowledge of the model. That is, a typical
DEC-POMDP solver takes as input the full model parame-
ters, including transition, observation and reward functions.
Additionally, the high computational complexity of DEC-
POMDPs further limits the scalability of solution methods
that rely on a complete model description. These drawbacks
are particularly critical when applying DEC-POMDP solvers
to complex domains, such as space exploration, disaster re-
sponse, and weather monitoring, where exact models are ex-
tremely large and hard to obtain.

Recently, several model-free algorithms have been pro-
posed to learn decentralized policies for finite-horizon DEC-
POMDPs. Specifically, Zhang and Lesser [2011] proposed a
scalable distributed learning method for ND-POMDPs [Nair
et al., 2005], a special class of DEC-POMDPs where agents
are organized in a network structure. Banerjee et al. [2012]

proposed a distributed learning method for the general case
of finite-horizon DEC-POMDPs, where agents take turns to
learn best responses to each other’s policies. However, both
methods rely on reinforcement learning techniques that pro-
duce a Q-value function that grows exponentially in the prob-
lem horizon. Thus, these approaches are unsuitable for DEC-
POMDPs with large or infinite horizons.

In this paper, we focus on infinite-horizon DEC-POMDPs.
Our approach is inspired by recent advances in planning
by probabilistic inference [Toussaint and Storkey, 2006;
Toussaint et al., 2008], where the planning problem is
reformulated as likelihood maximization in a mixture of
dynamic Bayesian networks and solved by Expectation-
Maximization (EM) algorithms [Dempster et al., 1977].
Most recently, this concept has been successfully applied
to solve infinite-horizon DEC-POMDPs [Kumar and Zilber-
stein, 2010]. However, like other model-based DEC-POMDP
algorithms, this approach requires complete knowledge of
the model. Moreover, even with a full model, the EM al-
gorithms do not scale well to problems with many agents.
Other EM-based approaches usually rely on additional prob-
lem structure to improve scalability [Kumar et al., 2011;
Pajarinen and Peltonen, 2011a].

In contrast to these methods, our approach is model-free
and does not require any additional structure of the models.
Specifically, we use the Monte-Carlo EM (MCEM) [Wei and
Tanner, 1990] where the costly E-step (the main bottleneck of
the model-based EM algorithms for DEC-POMDPs) is per-
formed by sampling from the model with importance weights
corresponding to the sampled rewards. Similar ideas have
been used to learn policies in single-agent (PO)MDPs [Vlas-
sis and Toussaint, 2009; Vlassis et al., 2009]. However, a
direct application of these methods results in inefficient sam-
pling for DEC-POMDPs given the huge joint policy space.
The main contribution of our approach is the development of
several efficient sampling techniques together with MCEM to
learn the policies of DEC-POMDPs with thousands of agents.
Furthermore, we show that our algorithm can be parallelized
using the MapReduce paradigm [Dean and Ghemawat, 2008]
and thereby can scale up well to large problems where the
sampling process is expensive and time-consuming. The
experimental results on common DEC-POMDP benchmarks
and large multi-agent coordination problems (with 100 and
2500 agents) confirm the effectiveness of our algorithm.



The reminder of the paper is organized as follows. In Sec-
tion 2, we briefly introduce the necessary background. In Sec-
tion 3, we propose our main algorithm and analyze its proper-
ties. In Section 4, we present experimental results on several
benchmark problems. We conclude with a summary of the
contributions and future work.

2 Background
2.1 The DEC-POMDP Model
Formally, a Decentralized Partially Observable Markov De-
cision Process (DEC-POMDP) [Bernstein et al., 2002] is de-
fined as a tuple 〈I, S, {Ai}, {Ωi}, P,O,R, b0, γ〉, where:
• I is a collection of n agents i ∈ I .
• S is a finite set of states for the system s ∈ S.
• Ai is a set of actions for agent i. We denote by ~a =

〈a1, a2, · · · , an〉 a joint action where ai ∈ Ai and ~A =
×i∈IAi is the joint action set.
• Ωi is a set of observations for agent i. Similarly, ~o =
〈o1, o2, · · · , on〉 is a joint observation where oi ∈ Ωi
and ~Ω = ×i∈IΩi is the joint observation set.
• P : S × ~A × S → [0, 1] is the transition function and
P (s′|s,~a) denotes the probability of the next state s′
where the agents take joint action ~a in state s.
• O : S × ~A× ~Ω→ [0, 1] is the observation function and
O(~o |s′,~a) denotes the probability of observing ~o after
taking joint action ~a with outcome state s′.
• R : S × ~A→ < is the reward function.
• b0 ∈ ∆(S) is the initial state distribution.
• γ ∈ (0, 1] is the discount factor.

For infinite-horizon DEC-POMDPs, the joint policy θ =
〈θ1, θ2, · · · , θn〉 is usually represented as a set of finite state
controllers (FSCs), one for each agent. Each FSC can be de-
fined as a tuple θi = 〈Qi, νqi , πaiqi , λq′iqioi〉, where:
• Qi is a set of controller nodes qi ∈ Qi.
• νqi ∈ ∆(Qi) is the initial distribution over nodes.
• πaiqi is the probability of executing action ai in node qi.
• λq′iqioi is the probability of the transition from current

node qi to next node q′i when observing oi.
The goal is to find a joint policy θ∗ that maximizes the ex-
pected value V (θ∗) = E[

∑∞
t=1 γ

tRt|b0, θ∗].

2.2 The EM Algorithm
Recently, the Expectation Maximization (EM) algorithm has
been proposed to efficiently solve infinite-horizon DEC-
POMDPs [Kumar and Zilberstein, 2010]. To apply the EM
approach, the reward function is scaled into the range [0, 1]

so that it can be treated as a probability: R̂(r = 1|s,~a) =
[R(s,~a)−Rmin]/(Rmax−Rmin) whereRmin andRmax are
the minimum and maximum reward values and R̂(r = 1|s,~a)
is interpreted as the conditional probability of the binary re-
ward variable r being 1. The FSC parameters θ are then opti-
mized by maximizing the reward likelihood with respect to θ:
L(θ) =

∑∞
T=0 P (T )P (R̂|T ; θ), where P (T ) = (1 − γ)γT .

This is equivalent to maximizing the expected discounted re-
ward V (θ) in the DEC-POMDP.

At each iteration, the EM approach consists of two main
steps: E and M. In the E-step, alpha messages α̂(~q, s) and
beta messages β̂(~q, s) are computed. Specifically, the alpha
message α̂(~q, s) can be computed by starting from the ini-
tial node and state distributions and projecting it T times for-
ward: α̂(~q, s) =

∑T
t=0 γ

t(1 − γ)αt(~q, s), where αt(~q, s)
is the probability of being in state s and nodes ~q at time t.
The message β̂(~q, s) can be computed similarly: β̂(~q, s) =∑T
t=0 γ

t(1 − γ)βt(~q, s), where βt(~q, s) is the reward proba-
bility for being in state s and nodes ~q when projecting t time
steps backwards. In the M-step, the FSC parameters are up-
dated using the method of Largrange multipliers.

2.3 Related Work
To date, several approaches have been proposed to learn
policies using sampling methods. Specifically, Zhang et
al. [2007] represent policies as conditional random fields
(CRFs) and use tree MCMC to sample CRFs. They as-
sume that agents can communicate instantaneously and know
the interaction structures. The approach that is closest to
ours is Stochastic Approximation EM (SAEM) [Vlassis and
Toussaint, 2009; Vlassis et al., 2009] for (PO)MDPs. In
that work, a new mixture model is proposed for the value
functions and a Q-value function is learned by maximizing
the likelihood of the new mixture model. In doing so, the
(PO)MDP policies (a mapping from (belief) states to actions)
can be straightforwardly induced from the learned Q func-
tion. In contrast, we want to learn the parameters of FSCs for
infinite-horizon DEC-POMDPs. Specifically, our work ad-
dresses the questions: (1) how to pick up the initial controller
node for each agent (νqi ); (2) how to choose an action for a
node of the agent (πaiqi ); and (3) how to transition to a next
node given a current node and an observation of the agent
(λq′iqioi ). Furthermore, given the fact that the policy space of
DEC-POMDPs is substantially larger than the policy space of
(PO)MDPs, direct application of sampling techniques is very
inefficient. Thus, we propose and test several methods that
improve sampling performance.

3 Monte-Carlo Expectation Maximization
As stated above, the goal of solving an infinite-horizon DEC-
POMDP is to find a joint FSC θ∗ that maximizes the dis-
counted expected value V (θ∗). In standard algorithms, this
value can be iteratively optimized by the Bellman equation.
Alternatively, Toussaint and Storkey [2006] show that this op-
timization problem can be translated into a problem of like-
lihood maximization in a mixture of finite-length processes
where L(θ) ∝ (1−γ)V (θ). Thus, maximizing the likelihood
L(θ) is equivalent to maximizing V (θ) in the policy space.
When the full model is given, this problem can be solved by
computing backward and forward messages and optimizing
the policy parameters with the EM algorithm. In model-free
settings, we can use trajectory samples drawn from DEC-
POMDPs to estimate the likelihood value L(θ).

In more detail, the sampling process starts with the system
picking an initial state and each agent i selects an initial con-
troller node q0i ∼ νqi from its FSC θi. At time step t, each



agent i chooses an action ati ∼ πaiqi and executes it (or sim-
ulates its execution). Given the joint action ~a t, the system
transitions from the current state to a new state and outputs
the immediate reward rt. Then, each agent i receives its own
observation oti and moves from its current node qti to a new
node qt+1

i ∼ λq′iqioi based on the observation oti. This pro-
cess repeats until the problem horizon T is reached. In the
sampling process, we record the data 〈~a t, rt, ~o t, ~q t〉 for ev-
ery time step t. Samples can be generated either from simu-
lators or real-world settings. The following section describes
how to optimize the policy parameters using these samples.

3.1 Policy Optimization
Let ξ = (x0, x1, x2, · · · , xT ) be a length-T trajectory where
xt = 〈~a t, rt, ~o t, ~q t〉, and X T = {ξ : |ξ| = T} be the
space of T -length trajectories. Given a joint policy θ, the
joint distribution of a T -length trajectory ξ is denoted by
P (R̂, ξ, T ; θ). In the EM algorithm, we assume R̂ is observed
and we want to find parameters θ of the joint policy that max-
imize the likelihood P (R̂; θ) =

∑
T,ξ P (R̂, ξ, T ; θ), where

T, ξ are latent (hidden) variables. Let q(ξ, T ) be a distribu-
tion over these latent variables. The energy function that we
want to maximize in the EM algorithm becomes:

F (θ, q)= logP (R̂; θ)−DKL(q(ξ, T )||P (ξ, T |R̂; θ))

=
∑
T,ξ

q(ξ, T ) logP (R̂, ξ, T ; θ) +H(q) (1)

where DKL is the Kullback-Leibler divergence between
q(ξ, T ) and P (ξ, T |R̂; θ), andH(q) is the entropy of q, which
is independent of the distribution of θ.

Starting with an initial guess of θ, the EM algorithm itera-
tively finds a q that maximizes F for a fixed θ in the E-step,
and then it finds a new θ that maximizes F for a fixed q in
the M-step. This procedure converges to a local maximum
of F . In the E-step, we can see that the optimal distribution
q∗ that maximizes F is the Bayes posterior computed with
parameters θold produced by the last M-step:

q∗(ξ, T ) = P (ξ, T |R̂; θold) (2)

because the KL-divergence measure is always nonnegative
and becomes zero only when the two distributions are equal.
In the M-step, we maximize F over θ using the optimal
q∗. By ignoring terms that do not depend on θ, the energy
function can be expressed by:

F (θ, q∗) = EP (ξ,T |R̂;θold)[logP (R̂, ξ, T ; θ)]

=
∑
T,ξ

P (ξ, T |R̂; θold) logP (R̂, ξ, T ; θ) (3)

In Monte-Carlo EM (MCEM) [Wei and Tanner, 1990], the
expectation in the E-step is estimated by drawing samples
from the conditional distribution of the latent variables
P (ξ, T |R̂; θold) given the observed data R̂ and θ. More
specifically, if we obtain m trajectories ξ1, ξ2, · · · , ξm the
expectation can be estimated by the Monte-Carlo sum:

F̃ (θ, q∗) =
1

m

m∑
k=1

logP (R̂, ξk, T ; θ) (4)

By the law of large numbers, the estimator F̃ converges to the
theoretical expectation F when m is sufficiently large.

To sample a trajectory ξ from the conditional distribu-
tion P (ξ, T |R̂; θold) ∝ P (T )P (ξ|T ; θold)P (R̂|ξ, T ; θold),
we first sample a maximal length T from P (T ) = (1−γ)γT ,
then sample a T -length trajectory ξ ∼ P (ξ|T ; θold) from
the DEC-POMDP model using the joint policy θold, and
then sample the binary reward r = 1 from the distribution
R̂(r = 1|sT , ~a T ) using the last state sT and the last joint ac-
tion ~a T in the trajectory ξ. In fact, the process of sampling a
T -length trajectory is equivalent to simulating the run of joint
policy θold in a T -step DEC-POMDP.

In the M-step, we compute new parameters θ that maxi-
mize the estimated energy function:

F̃ (θ, q∗) =
1

m

m∑
k=1

logP (R̂, ξk, T ; θ) = · · ·

+
∑
i∈I

1

m

m∑
k=1

ξ0k(qi) log νqi

+
∑
i∈I

1

m

m∑
k=1

T−1∑
t=0

ξtk(ai, qi) log πaiqi

+
∑
i∈I

1

m

m∑
k=1

T−1∑
t=0

ξtk(q
′
i, qi, oi) log λq′iqioi

(5)

where the notation · · · represents the terms that are indepen-
dent of the parameters θ, and ξtk(·) is equal to 1 if the argu-
ments (·) are the t-th elements of trajectory ξk and 0 other-
wise. Then, we can apply the method of Lagrange multipliers
to find the new parameters θ = arg maxθ′ F̃ (θ′, q∗):

∇νqi [F̃ (θ, q∗)− Ci(
∑
qi∈Qi

νqi − 1)] = 0⇒

νqi =
1

Ci
[
1

m

m∑
k=1

ξ0k(qi)]
(6)

∇πaiqi
[F̃ (θ, q∗)− Cqi(

∑
ai∈Ai

πaiqi − 1)] = 0⇒

πaiqi =
1

Cqi
[
1

m

m∑
k=1

ξ0k(ai, qi)]
(7)

∇λq′
i
qioi

[F̃ (θ, q∗)− Cqioi(
∑
q′i∈Qi

λq′iqioi − 1)] = 0⇒

λq′iqioi =
1

Cqioi
[
1

m

m∑
k=1

ξ0k(q
′
i, qi, oi)]

(8)

where −Ci,−Cqi ,−Cqioi are the Lagrange multipliers and∑
qi∈Qi

νqi = 1,
∑
ai∈Ai

πaiqi = 1,
∑
q′i∈Qi

λq′iqioi = 1 are
probability constraints for νqi , πaiqi , λq′iqioi respectively.

3.2 Importance Sampling
The performance of MCEM depends on the sample of trajec-
tories ξ1, ξ2, · · · , ξm in the E-step obtained from a simulator
using the previous joint policy θold. However, drawing a tra-
jectory sample at each iteration could be prohibitively costly,
particularly for large problems where the transition from the
current state to a next state involves simulating a complex
dynamical system (e.g., the movement of multiple robots in



a 3D environment). Furthermore, the EM algorithm may re-
quire an unrealistically large data sample for producing mean-
ingful results. Fortunately, this computational expense can be
substantially improved via importance sampling.

At each iteration, rather than directly obtaining a new sam-
ple from P (ξ, T |R̂; θold) with the most recent parameter θold,
we can set importance weights to the original sample through
the updated distribution P (ξ, T |R̂; θold). Then, the energy
function becomes:

F̃ (θ, q∗) =

m∑
k=1

ωk logP (R̂, ξk, T ; θ)/

m∑
k=1

ωk (9)

where the original sample ξk obtained from the distribution
q(ξk) is corrected for the distribution we have at the current
iteration (i.e., p(ξk)) through the weights:

ωk =
p(ξk)

q(ξk)
, where p(ξk) = P (ξk, T |R̂; θold) (10)

The cost of obtaining the weight ωk is less than the cost of a
new sample because the weights only depend on the known
distributions p and q, but not on the unknown likelihoodL(θ).

Note that at each iteration we want to draw m trajectories
from the conditional distribution:
P (ξ, T |R̂; θold) ∝ P (T )P (ξ|T ; θold)P (R̂|ξ, T ; θold) (11)

The term P (R̂|ξ, T ; θold) on the right-hand side merely de-
pends on the last state and joint action in the trajectory ξk,
i.e., P (R̂|ξ, T ; θold) = R̂(r = 1|sTξk , ~a

T
ξk

). Instead of sam-
pling the binary reward for each trajectory, the probabilities
of the reward distribution can be used as the weights:

ωk =
p(ξk)

q(ξk)
= (1− γ)γT R̂(r = 1|sTξk , ~a

T
ξk

) (12)

In this case, we set q(ξk) = P (ξk|T ; θold) and generate a
sample without sampling the binary rewards.

The above methods of importance sampling can be ex-
tended to every sub-trajectory of a given length-T trajectory
ξk. Let ξτk be a length-τ sub-trajectory of ξk, i.e., a length-τ
prefix of ξk, where τ ≤ T . According to Eq. (11), we have:

p(ξτk ) = q(ξτk )P (τ)P (R̂|ξτk , τ ; θold) (13)
where q(ξτk ) = P (ξτk |τ ; θold). Therefore, the weight of the
sub-trajectory ξτk can be computed as follows:

ωτk =
p(ξτk )

q(ξτk )
= (1− γ)γτ R̂(r = 1|sτξk , ~a

τ
ξk

) (14)

where sτξk and ~a τξk are the last state and joint action of ξτk .
Intuitively, q(ξτk ) is the probability of drawing a trajectory ξτk
using the joint policy θold with the fixed length τ .

Applying the above results to Eq. (9), we compute the new
energy function as follows:

F̃ (θ, q∗) = η

m∑
k=1

T∑
τ=1

ωτk logP (R̂, ξk, τ ; θ) (15)

where η is the normalizing factor. Thus, once a length-T tra-
jectory ξk is sampled from the simulator, we can use the re-
ward signal at each step of ξk to estimate the energy function
instead of merely the last-step reward.

3.3 Policy Exploration
In standard MCEM, samples are randomly drawn from a sim-
ulator using the previous joint policy θold. However, entirely
random draws often do not explore the policy space well. For
instance, if the initial policy is extremely conservative (e.g.,
all agents always do nothing), the policy space will not be ex-
plored at all. On the other hand, if the initial policy is nearly
optimal, we want to concentrate on it to assure fast conver-
gence. This is known as the exploration-exploitation dilemma
in reinforcement learning [Sutton and Barto, 1998] and has
led to the development of a variety of heuristic strategies for
obtaining a better spread of sampled trajectories.

For DEC-POMDPs, the sample space we want to explore is
the joint policy space θ. The policy of each agent θi specifies
how an action ai is selected given its inner state (controller
node) qi. The inner state transitions depend on the obser-
vation signal oi received from the environment. In standard
MCEM, the action ai and controller node qi are randomly
drawn from θold. Thus, the exploration depends on the qual-
ity of θold. Ideally, if we knew the optimal policy θ∗, we
could use it to sample the trajectories and the policy param-
eters would quickly converge to their optimal values. While
that is unrealistic, we can approximate θ∗ by relaxing some of
the assumptions of DEC-POMDPs. For example, we can as-
sume the system state is fully observable during the learning
phase. In that case, θ∗ corresponds to the underlying MDP
policy that can be computed more easily. For the exploration
purpose, even random policies can be helpful. A more so-
phisticate approach is to combine multiple methods using a
heuristic portfolio [Seuken and Zilberstein, 2007].

To explore the policy space, the simplest technique is
using the ε-greedy strategy [Sutton and Barto, 1998]. Given
the heuristic portfolio, we first select a heuristic from the
portfolio. With a probability ε, we choose an action accord-
ing to the heuristic and, with probability 1 − ε, we select an
action by following the previous policy θold. Given such a
trajectory ξ, the importance weight ω can be corrected as:

ω =
p(ξ)

q(ξ)
= ω′

∏
(qi,ai)∈HA(ξ)

πaiqi (16)

where ω′ is the original weight and HA(ξ) is the set of
node-action pairs (qi, ai) in trajectory ξ where the action ai
has been selected by the heuristics. Notice that πaiqi is a
probability of θold and is known to the agent. Similarly, we
can explore the policy space by selecting the next controller
node heuristically. Given a fixed number of controller nodes,
we want each of them to be visited constantly during the
sampling. Thus, inspired by the the research of multi-armed
bandit problems, we count the visiting frequency of each
node and use a UCB [Auer et al., 2002] style heuristic to
select the next controller node:

q∗i = arg max
q′i∈Qi

[λq′iqioi + c

√
2 lnN(qi, oi)

N(qi, oi, q′i)
] (17)

where c is the rate, N(qi, oi, q
′
i) is the number of times that

q′i has been visited from qi given oi, and N(qi, oi) is total
number of times that the pair (qi, oi) has been visited so far.
Intuitively, if N(qi, oi, q

′
i) is quite small, we should visit



q′i more frequently from qi given oi. After applying this
heuristic, the importance weight can be corrected by:

ω =
p(ξ)

q(ξ)
= ω′

∏
(qi,oi,q′i)∈HQ(ξ)

λq′iqioi (18)

where HQ(ξ) is the set of node-observation tuples (qi, oi, q
′
i)

in trajectory ξ where the next controller node q′i has been
selected by the heuristic. Notice that the action heuristics and
node heuristics can be applied synchronously for multiple
agents and the new importance weight becomes:

ω = ω′[
∏

(qi,ai)∈HA(ξ)

πaiqi ] · [
∏

(qi,oi,q′i)∈HQ(ξ)

λq′iqioi ] (19)

3.4 Analysis and Discussion
As a variant of MCEM, our algorithm converges to a local op-
tima in the limit. Additional convergence results can be found
in a recent survey article [Neath, 2012]. Although it only
finds local optima, our algorithm offers significant advantages
over learning approaches [Banerjee et al., 2012] based on the
best-response strategy because EM is more stringent and sat-
isfies the Karush-Kuhn-Tucker conditions [Bertsekas, 1999]
(the norm in nonlinear optimization) while the best-response
strategy provides no such guarantees. For the sample size,
intuitively, we should start with a small size and increase the
size as EM progresses [Wei and Tanner, 1990]. We can draw
on a rich literature to decide how to increase the sample size
and when to stop the learning process (see [Neath, 2012]).

As for the computational complexity, our algorithm is lin-
ear w.r.t. the sample size. Hence the runtime of our algo-
rithm depends on the sampling process, more precisely, the
simulator for drawing samples. If the simulations are expen-
sive (e.g., a real-world 3D environment), we would like to
run them concurrently on several machines. One advantage
of MCEM is that it can run in parallel on a large number of
computational nodes using the MapReduce framework [Dean
and Ghemawat, 2008]. Specifically, in the Map step, each
worker node reads the current policy and runs the simulator
to sample trajectories. For every trajectory ξτk , the worker
computes the weight ωτk according to Eq. 14, or Eq. 19 if the
heuristics are used, and emits the following key-value pairs:

(νqi → ωτk), (πaiqi → ωτk), (λq′iqioi → ωτk) (20)

where qi is any agent i’s controller node in ξτk , ai is the action
taken at node qi, oi is the received observation and q′i is the
next node. If q′i is not in ξτk but in ξτ+1

k , we emit ωτ+1
k for

λq′iqioi where ωτ+1
k is the weight of ξτ+1

k . Note that Map-
pers are not assigned to agents, but offer a distributed offline
concurrent mechanism to perform the E-step. In the Reduce
step, each worker collects a list of weights for νqi , πaiqi and
λq′iqioi . These workers compute the averaged values of these
weights and emit the new policy parameters νqi , πaiqi and
λq′iqioi according to Eqs. 6, 7 and 8.

4 Experiments
We tested our algorithm on several common benchmark prob-
lems in the DEC-POMDP literature to evaluate the solution

Table 1: Results for Common DEC-POMDP Benchmarks

Problems MCEM EM
Value Time Value Time

Broadcast Channel 9.75 17s 9.05 < 1s
Multi-Agent Tiger -10.86 18s -19.99 < 1s
Recycling Robots 59.45 18s 62.17 5s
Meeting on a Grid 7.34 26s 7.42 42s
Box Pushing 59.76 32s 39.83 1320s
Mars Rovers 7.65 187s 9.96 9450s

quality and runtime performance. Additionally, a traffic con-
trol domain with thousands of agents was used to test the scal-
ability of our algorithm. For each problem, a simulator was
implemented to simulate the DEC-POMDP with the discount
factor γ=0.9. For MCEM, the sample size was 1000 for all
problems. Although a domain-specified ε would be useful for
the ε-greedy strategy, we used ε=0.1 for all the problems. The
number of iterations was 300 as most of the tested problems
could converge to a stable solution after 300 iterations. The
policy parameters were initialized randomly with |Qi|=3, as
do most existing model-based approaches. Because EM con-
verges to a local optimum that depends on the initial policies,
we restarted the algorithm 10 times with different (random)
policies and selected the best solution. To evaluate solution
quality, we execute each policy on the simulator (each with
T=1000 as γT is negligible at that point) and report the av-
erage value (total discounted rewards) over 200 runs (statis-
tically significant as the policy value). All the algorithms
were implemented in Java 1.6 and run on a machine with a
2.66GHZ Intel Core 2 Duo CPU and 4GB RAM.

4.1 Common Benchmark Problems
Our algorithm was tested on 6 common benchmark problems
for infinite-horizon DEC-POMDPs, namely: broadcast chan-
nel (|S|=4, |Ai|=2, |Ωi|=5), multi-agent tiger(|S|=2, |Ai|=3,
|Ωi|=2), recycling robots(|S|=3, |Ai|=3, |Ωi|=2), meeting in
a 2×2 grid (|S|=16, |Ai|=5, |Ωi|=4), box pushing (|S|=100,
|Ai|=4, |Ωi|=5), and Mars rovers (|S|=256, |Ai|=6, |Ωi|=8).
We used the underlying MDP policy (obtained by value iter-
ation) as the heuristic for policy exploration. Because none
of the existing algorithms can solve infinite-horizon DEC-
POMDPs without knowing the complete model, a direct com-
parison is impossible. Nevertheless, we did compare the so-
lution quality and runtime performance of our algorithm with
the existing model-based EM approach [Kumar and Zilber-
stein, 2010], which uses full knowledge of the models. Cur-
rently, this is the leading approach in the literature for solving
infinite-horizon DEC-POMDPs.

Table 1 shows the value and runtime results of our MCEM
algorithm and the model-based EM approach. In these exper-
iments, our MCEM algorithm consistently produces solutions
that are competitive with the model-based EM solutions, de-
spite the fact that it relies on samples. In fact, for some prob-
lems, our algorithm produces better solutions than the model-
based EM thanks to the use of the MDP heuristics. For small
problems (e.g., broadcast channel and multi-agent tiger), the
model-based EM algorithm can converge very quickly, while
our algorithm needs more time for sampling. However, the
runtime of the model-based EM grows dramatically for larger
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Figure 1: Illustration of the Traffic Control Problem on an n×n Grid and Results

problems (e.g., box pushing and Mars rovers) because it re-
lies on the α and β messages that need to consider every state.
In contrast, the runtime of our algorithm grows moderately
with the number of states, as the simulators need more time
to simulate the process. Overall, our algorithm is more scal-
able because it is usually cheaper to simulate a large process
than considering every state.

4.2 Traffic Control on an n×n Grid
This is an abstract traffic domain first introduced by [Zhang
et al., 2007]. In this domain, as shown in Figure 1(a), traffic
flows on an n×n grid from one side to the other without turn-
ing. Each intersection is controlled by an agent that only al-
lows traffic to flow vertically or horizontally at each time step.
When a path is clear, all awaiting traffic for that path prop-
agates through instantly and each unit of traffic contributes
+1.0 to the team reward. There are n+n traffic queues on
the top and left boundaries. Traffic units arrive with proba-
bility 0.5 per time step per queue. As the queues fill up, they
drop traffic if the maximum capability (10 traffic units per
queue) is reached. As any misaligned gates will block traf-
fic on that path, agents must coordinate with each other to
maximize the overall rewards. This problem has n×n agents
and 10n+n states. Each agent has 2 actions (aligning verti-
cally or horizontally) and 10×10 observations, indicating the
number of traffic units waiting in the vertical and horizon-
tal queues. In the original problem, agents can communicate
with each other instantaneously and know the grid structure.
Our DEC-POMDP version of the problem does not rely on
such assumptions and is therefore fundamentally harder.

Figures 1(b) and 1(c) show the value and runtime results
of this domain with 10×10 (100 agents and 1020 states) and
50×50 (2500 agents and 10100 states) grids. These two in-
stances are prohibitively hard for the existing DEC-POMDP
algorithms. We compared our results with a naı̈ve implemen-
tation of MCEM (our algorithm without importance sampling
and policy exploration described in Sections 3.2 and 3.3)
to show the benefit of our sampling and exploration tech-
niques. This baseline approach is called MC. Our algorithm
used a hand-coded MDP heuristic for policy exploration. Fig-
ure 1(b) shows that our algorithm can converge to a stable so-
lution in less than 20 iterations for both instances. In fact, the
value matches what is achieved by the hand-coded MDP pol-
icy (assuming all agents observe the full state). Thus, using
our approach, the agents do coordinate effectively. In con-

trast, the naı̈ve MC method converged very slowly for the
smaller (10×10) instance and the policies produced no im-
provement (always 0.0) for the larger (50×50) instance. The
reason is that the joint policy space is huge (2n×n joint ac-
tions, 100n×n joint observations) so the naı̈ve MC method
has a very small chance to gain positive reward signals. Both
methods are linear with respect to the number of iterations.
For the smaller instance, our algorithm took almost the same
time as the naı̈ve MC method. For the larger instance, the
runtime of our algorithm increased because it took more time
to compute the hand-coded heuristic.

5 Conclusions
We present a new MCEM-based algorithm for solving
infinite-horizon DEC-POMDPs, without full prior knowledge
of the model parameters. This is achieved by drawing trajec-
tory samples and improving the joint policy using the EM
algorithm. We show that a straightforward application of
Monte-Carlo methods is very inefficient due to the extremely
large joint-policy space, particularly with a large number of
agents. To address that, we implement two sampling strate-
gies that better utilize the samples and explore the policy
space. Although these methods are well-known in statistics
and reinforcement learning, combining them with MCEM in
a multi-agent setting is nontrivial. The results on a range of
DEC-POMDP benchmarks confirm the benefits of the new
algorithm—particularly when scalability with respect to the
number of agents is considered.

The algorithm produces good results for six common DEC-
POMDP benchmarks. More importantly, it can effectively
tackle much larger problems such as the traffic control do-
mains with up to 2500 agents—an intractable problem for
state-of-the-art DEC-POMDP solvers. In the future, we plan
to extend our work to domains with continual state and ac-
tion spaces and test our algorithm on additional complex real-
world applications such as robot soccer and rescue, where
fully functional simulators are readily available. Hence, this
work lays the foundation for the application of DEC-POMDP
techniques in such challenging domains.
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