Real-Time Problem-Solving with Contract Algorithms

Correction of the Proofs of Theorems 2 and 4^{*}

Theorem 2 The minimal acceleration ratio needed to construct an interruptible algorithm from a given contract algorithm is $r=4$.

Proof: From Lemma 1 we know that for any sequence of contracts, $X=\left(x_{1}, x_{2}, \ldots\right), r$ must satisfy:

$$
\forall i \geq 1: \quad Q_{\mathcal{A}}\left(\frac{x_{1}+x_{2}+\cdots+x_{i+1}}{r}\right) \leq Q_{\mathcal{A}}\left(x_{i}\right)
$$

From the strict monotonicity of $Q_{\mathcal{A}}$ we get:

$$
\forall i \geq 1: \quad \sum_{j=1}^{i+1} x_{j} \leq r x_{i}
$$

Setting:

$$
g_{0}=0 \quad \text { and } \quad g_{i}=\sum_{j=1}^{i} x_{j}, i \geq 1
$$

we can write the previous equation as:

$$
\begin{equation*}
\forall i \geq 1: \quad g_{i+1} \leq r\left(g_{i}-g_{i-1}\right) \tag{4}
\end{equation*}
$$

We know that the sequence $\left(g_{i}\right)_{i \geq 1}$ is an increasing sequence of positive numbers, so ρ, defined as follows:

$$
\rho=\inf \left\{\frac{g_{2}}{g_{1}}, \frac{g_{3}}{g_{2}}, \cdots, \frac{g_{i+1}}{g_{i}}, \cdots\right\}
$$

satisfies $\rho \geq 1$. From Equation (4) we obtain

$$
\forall i \geq 1: \quad g_{i} \geq g_{i-1}+\frac{g_{i+1}}{r}
$$

and thus

$$
\forall i \geq 2: \quad \frac{g_{i}}{g_{i-1}} \geq 1+\frac{g_{i+1}}{r g_{i-1}} \geq 1+\frac{\rho^{2}}{r} .
$$

Finally, we deduce that:

$$
\rho \geq 1+\frac{\rho^{2}}{r}
$$

(so that $\rho>1$) or that:

$$
r \geq \frac{\rho^{2}}{\rho-1} \geq 4
$$

as the function $\rho \longrightarrow \frac{\rho^{2}}{\rho-1}$ reaches a minimum of 4 on the interval $(1,+\infty)$ for $\rho=2$.

[^0]Theorem 4 The minimal acceleration ratio needed to construct an interruptible algorithm to solve m problem instances with a given contract algorithm is $r=\left(\frac{m+1}{m}\right)^{m+1}$.
Proof: For any sequence of contracts, $X=\left(x_{k}\right)_{k \geq 1}, r$ must satisfy:

$$
\forall i \geq 1: \quad Q_{\mathcal{A}}\left(\frac{x_{1}+x_{2}+\ldots+x_{i+m}}{m r}\right) \leq Q_{\mathcal{A}}\left(x_{i}\right)
$$

From the strict monotonicity of $Q_{\mathcal{A}}$ we get:

$$
\forall i \geq 1: \quad \sum_{j=1}^{i+m} x_{j} \leq m r x_{i}
$$

Setting:

$$
g_{0}=0 \quad \text { and } \quad g_{i}=\sum_{j=1}^{i} x_{j}, i \geq 1
$$

we can write the previous equation as:

$$
\forall i \geq 1: \quad g_{i+m} \leq m r\left(g_{i}-g_{i-1}\right)
$$

or

$$
\begin{equation*}
\forall i \geq 1: \quad g_{i} \geq g_{i-1}+\frac{g_{i+m}}{m r} \tag{9}
\end{equation*}
$$

We know that the sequence $\left(g_{i}\right)_{i \geq 1}$ is an increasing sequence of positive numbers, so ρ, defined as follows:

$$
\rho=\inf \left\{\frac{g_{2}}{g_{1}}, \frac{g_{3}}{g_{2}}, \cdots, \frac{g_{i+1}}{g_{i}}, \cdots\right\}
$$

satisfies $\rho \geq 1$. From Equation (9) we obtain

$$
\forall i \geq 2: \quad \frac{g_{i}}{g_{i-1}} \geq 1+\frac{g_{i+m}}{m r g_{i-1}} \geq 1+\frac{\rho^{m+1}}{m r}
$$

Finally, we deduce that:

$$
\rho \geq 1+\frac{\rho^{m+1}}{m r}
$$

(so that $\rho>1$) or that:

$$
r \geq \frac{\rho^{m+1}}{m(\rho-1)}
$$

The function $\rho \longrightarrow \frac{\rho^{m+1}}{\rho-1}$ reaches its minimum on the interval $(1,+\infty)$ when $\rho=\frac{m+1}{m}$, therefore $r \geq\left(\frac{m+1}{m}\right)^{m+1}$.

The ratio $\left(\frac{m+1}{m}\right)^{m+1}$ can be obtained by a sequence of contracts defined by a geometric series with run-times being multiplied by a factor of $\frac{m+1}{m}$. Thus the best possible acceleration ratio is $r=\left(\frac{m+1}{m}\right)^{m+1}$.

[^0]: ${ }^{*}$ We are grateful to Reshef Meir for pointing out the error in the original proofs.

