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1. Introduction

Since the mid 1980’s, the artificial intelligence (AI) research community has
produced a large body of work on incremental problem solving techniques such
as anytime algorithms [4,18] and flexible computation [10,11]. Numerous such
algorithms have been constructed for solving core AI problems such as heuris-
tic search, constraint satisfaction, planning and scheduling, and diagnosis. The
working notes of the 1996 AAAI Fall Symposium on Flexible Computation offer a
good sample of such techniques and applications [14]. The resulting systems have
proved useful in addressing the high computational complexity and the inherent
uncertainty associated with AT problem-solving techniques.

Both anytime algorithms and flexible computation refer to problem-solving
techniques that are interruptible, making it possible to stop deliberation and
select action at any time. Solution quality typically improves as computation
time increases. Therefore, these techniques facilitate the construction of systems
that can operate with limited computational resources and react to dynamic
changes in their environment. When combined with an appropriate meta-level
control, anytime algorithms make it possible to build systems that optimize the
amount of deliberation based on the actual progress they make and the urgency
to take action [4,11].

Some anytime algorithms, however, are not interruptible. Such algorithms,
called contract algorithms [18], require the amount of run-time to be determined
prior to their activation. In other words, contract algorithms offer a tradeoff
between computation time and quality of results, but they do not produce a con-
stant stream of results. Once activated with a particular contract time, a contract
algorithm may not produce any useful result before the end of the contract.

There are several reasons why certain problem-solving techniques are non-
interruptible. One general class of contract algorithms uses the contract time to
tune up the algorithm so as to produce a result within that time. The algorithm’s
run-time in this case is determined by a set of internal parameters. For example,
game playing programs based on adversarial search can perform depth-bounded
search using a heuristic evaluation function to estimate the “goodness” of non-
terminal states. For any given time allocation, one can set up an appropriate
depth limit so as to complete the search within the available time. Another
example is using state-space abstraction to reduce the amount of time it takes
to solve a problem. This technique can reduce the computational cost of finding
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a path between two points on a grid or computing a policy given a Markov
decision process. A more precise problem description leads to a more valuable
result, but it also takes more time to compute. Once a new resolution is used, the
algorithm starts solving the problem from scratch, leading to a non-interruptible
approach. Additional examples of AI techniques that fall in this category are
certain model-based diagnosis techniques [15], design-to-time scheduling [6], and
some job scheduling techniques [5].

Another important class of contract algorithms includes systems composed
of two or more anytime problem-solving techniques. Composition, even simple
sequencing, destroys interruptibility. For example, a medical treatment system
that is composed of an anytime diagnosis module and an anytime treatment
planning module is not interruptible. Treating the resulting system as a contract
algorithm is more appropriate. The problem of optimal allocation of a given
contract time among the components of the composed system has been studied
for a variety of program structures [20].

This paper addresses the problem of building an interruptible real-time sys-
tem using contract algorithms. The key question is how to use prior knowledge
about the performance of the algorithm and the expected deadline in order to
produce the best possible result by the deadline. This is done by activating the
contract algorithm multiple times with different contracts. When the system is
interrupted, the best available solution is returned. Section 2 provides a formal
definition of the contract sequencing problem. Section 3 describes an optimal
solution to the problem when no information is available about the deadline. In
Section 4, we show how to handle quality uncertainty and stochastic deadlines.
Section 5 provides an optimal solution to the sequencing problem when a time-
dependent utility function is given instead of a strict deadline. In Section 6, we
discuss several lines of related work. The paper concludes with a summary of the
contribution of this work and some open questions.

2. Using contract algorithms in interruptible domains

Suppose that a contract algorithm, A, is used in an interruptible domain in
which the amount of time available for problem solving is unknown in advance.
At a particular time, the system receives a deadline signal indicating that the
computation must be terminated and the best available result must be returned.

Examples of interruptible domains include a diagnosis system in an intensive



4 Zilberstein, Charpillet, and Chassaing / Optimal Sequencing of Contract Algorithms

care unit; a data visualization program that may be interrupted by its user; and
a scheduling program that may need to return a new schedule once processors
are ready to accept new tasks.

We use in this paper prior information about the performance of the contract
algorithm. This information is typically based on an empirical evaluation of the
algorithm with a large set of problem instances. We begin with a simple form of
performance profile [4,3] and generalize it in Section 4.

Definition 1. A performance profile, Q4(t), of a contract algorithm A, de-
notes the output quality as a function of contract time ¢.

The performance profile is assumed to be a monotone increasing and con-

tinuous function of time.

t1 <ty Qalt) < Qa(ta)

Monotonicity is a standard property of anytime algorithms that can be guaran-
teed if the best result rather than the most recently generated one is returned.
Strict monotonicity and continuity are assumed in order to simplify the analysis
in Section 3.

If the amount of time available for computation is known in advance, the
best strategy to maximize the quality of the result is to run the contract algorithm
once giving it all the available time. What happens when there is no information
(or only stochastic information) about the deadline? The contract algorithm
should be activated with some contract time x1. If the algorithm completes its
execution before the deadline, it should be reactivated with a new contract xo
and so on. Because of the monotonicity of @ 4, it is never beneficial to use a
short contract following a longer one. Therefore, we get the following sequence
of contracts:

T <Te < < < Xy

Suppose that an interruptible anytime algorithm B is constructed using A with
the sequence of contracts X = (x1,2,...). Whenever B is interrupted, it should
return the result obtained by the most recently completed contract. No solution
is available before the termination of the first contract (which is arbitrarily small).
Therefore, the performance profile of the interruptible algorithm, B, is as follows.
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0 ift <x

QB(t) _ Q_A(.’L'l) lf 1 <t<zi+ 22 (1)

Q) if Yi_y oy <t < X a;

What is the sequence of contracts that produces the best anytime algorithm?
To answer this question we must first define the notion of “best” sequence. If
the deadline, d, is known in advance, the best quality @ 4(d) can be guaranteed.
Suppose now that an interruptible algorithm is created by a sequence of con-
tracts. We want the interruptible algorithm to guarantee the same quality as
the contract algorithm, if it runs on a processor that is accelerated by a factor
of » > 1. This definition follows the notion of bounded optimality' defined by
Russell, Subramanian and Parr [16]. In fact, the results presented in Section 3
can be interpreted as the construction of a bounded-optimal interruptible algo-
rithm from the contract one. Moreover, we prove that the minimal acceleration
needed by any interruptible algorithm that matches the quality of A is 4. The
acceleration ratio is defined as follows.

Definition 2. Let A be a contract algorithm and B an interruptible algorithm
produced by the sequence of contracts X = (x1,xs,...), then the acceleration
ratio of X, r > 1, is the smallest constant ¢ for which:

Viz T Qulet) 2 Qa(t) 2)

The acceleration ratio is the minimal acceleration that guarantees that the
interruptible algorithm will always have a solution ready from the previous con-

tract that is at least as good as the one produced by the contract algorithm when

the time of interruption is known in advance. The condition ¢ > %! is needed

because no solution is available before the termination of the first contract. Note
that the acceleration ratio does not imply that any application must utilize a

! The term bounded optimality has been used also by Horvitz [10] to refer to the optimization
of computational utility given a set of assumptions about expected problems and constraints
in reasoning resources. This definition is broader than the one used in this paper. Our
notion of bounded optimality is more similar to the one used by Russell, Subramanian and
Parr [16]. In particular, the latter definition focuses on optimization of program design as
opposed to optimization of the actions performed by an agent. The optimal sequencing of
contract algorithms is an example of program construction mechanism that fits that definition.
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faster processor; it is only a performance measure of a given sequence of con-
tracts. It is also important to note that the acceleration ratio is a worst-case
measure. An acceleration of r is only needed when, in the worst case, the last
contract algorithm is interrupted near its termination time. On average, however,
a lower acceleration is needed. This has been confirmed empirically by Pos [15].

3. Optimal sequencing of contracts

Russell and Zilberstein have shown that a particular sequence of contracts
requires an acceleration ratio of 4 [18,21], thus establishing an upper bound on the
optimal solution. The sequence of contracts achieving this ration is a geometric
series with run-time being doubled at each activation. This result is summarized
by the following theorem.

Theorem 1. [Russell and Zilberstein, 1991] For any contract algorithm A, an
interruptible algorithm B can be constructed such that Qg(4t) > Q4(?).

This section introduces a stronger result and a generalization of the above
theorem. First, we prove that the acceleration ratio of 4 is the best possible over
any sequence of contracts. Then, the result is generalized to the case of multiple

problem instances.

3.1. Solving a single problem instance

We first show that the above sequence construction is in fact optimal in the
sense that it requires the minimal acceleration ratio. In general, the acceleration
ratio must hold in the worst possible case: when the interruptible algorithm is
stopped just before the end of the current contract x;;1 rendering that contract
useless. The best result produced by the previous run (with contract time z;) is
returned. This leads to the following property.

Lemma 1. Equation (2) is equivalent to

i+1
Vi>1: Qua(z) > Qad xj /c) (3)

i=1
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Proof: We first show that (2) = (3). Consider some ¢ > 1 and let

N IR
s(z):—g ;.
c?

Jj=1

Let t = z_ denote the fact that ¢ approaches x from below. Given that Condi-
tion (2) holds in particular for ¢ — s(i + 1)_, we get:

. > .
t—>sl(1ir£1)_ @plet) t—)sl(lir-ll—ll)_ Qalt)

From (1) we know that for any ¢, s(i) <t < s(i + 1):

Qs(ct) = Qa(w:)-

Therefore we obtain:

Vizl: Q) > lm_ Qult).
t—s(i+1)—

Finally, by the continuity of Q 4:

Vi>1: Qa(zi) > Qa(s(i+1)),

that is:
i+1
Vi>1: Qalzi) > Qad  xj /o).
i=1
The converse, (3) = (2), is straightforward. Consider any ¢ such that s(i) <
t < s(i+1). We have

Qs(ct) = Qa(z:)

i+1
>Qu(d = /o)

j=1
>Qa(t). L

To summarize, in order to show that a particular sequence of contracts is optimal,
it is sufficient to show that its acceleration ratio is the smallest required to satisfy
Equation (3).

Theorem 2. The minimal acceleration ratio needed to construct an interruptible
algorithm from a given contract algorithm is r = 4.
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Proof: From Lemma 1 we know that for any sequence of contracts, X =
(z1, 2, ...), r must satisfy:

1+ x2+ -+ T
r

Vi>1: Qul ) < Qalzs)

From the strict monotonicity of Q4 we get:
i+1
Vi>1: Z:ngrxi
j=1

Setting g; = E;’:l xj, the previous equation can be rewritten:
Vi>2: giv1 <7(gi — gi-1)- (4)

The sequence (g1, g2, ...) is an increasing sequence of positive numbers. Let p be

the infimum? of the sequence.
. 92 93 Ji+1
p=inf{== 2= . 7T}
g1 92 Gi

It is clear that p > 1. From Equation 4 we obtain

Vi>2: giZQi—l"’gi:la

and thus, for any ¢ > 2 we have

. , 2
9121+gz+121+P_‘
gi-1 rgi—1 r
Because {Vi z; > a} = {inf; z; > a}, we conclude that
2
0
>1+—.
p=1l+ .

Equivalently, because p > 1, we get
2
r> p .
S

The function f(p) = ppT21 has a minimum of f(2) = 4 on the interval (1, +o0).

Therefore, r > 4. W

Therefore, the minimal acceleration ratio needed to construct an interrupt-
ible algorithm from a given contract algorithm is 4. This factor can be reduced
by using additional processors. (In the multi-processor case, all the processors
are accelerated by the same factor r.) In general, the minimal acceleration ratio

2 The infimum of a set S is the greatest lower bound of S.
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goes down as the number of processors grows. The acceleration ratio approaches
1 as the number of processors approaches infinity because with unlimited number
of processors we can have a dedicated processor executing a single contract for
any possible deadline.

The more practical question of finding good schedules for a small number of
processors has been studied recently by Bernstein and Zilberstein [2]. The result
is summarized by the following theorem.

Theorem 3. [Bernstein and Zilberstein, 2000] An upper bound on the best ac-
celeration ratio that can be achieved with k& processors is:

k41

(k+1)*
k

In the case of two processors, for example, the best known acceleration ratio
is 31/3/2 ~ 2.598. A lower bound of 2 can be established by showing that any
lower acceleration ratio violates Theorem 2. This leaves open the general problem
of optimal sequencing of a contract algorithm using k > 2 processors.

3.2. Solving multiple problem instances

We now generalize Theorem 2 to the case in which a contract algorithm
with a performance profile Q) 4 is used to solve m independent problem instances.
The goal is to maximize the minimal solution quality over all problem instances.
When the deadline d is known in advance, the obvious best strategy is to divide all
the available time equally among the problem instances guaranteeing a minimal
quality of Q A(%)- The question is how to construct the best interruptible anytime
algorithm when the deadline is unknown. As with a single task, we want to
find the minimal acceleration needed to match the performance of the contract
algorithm with a known deadline.

There are many situations in which multiple instances of a problem must
be solved in real-time. Examples include search problems with multiple possible
starting states; code optimization of several tasks to be executed on a parallel ma-
chine; and compression of a file divided into m blocks to be transmitted through
m equivalent communication channels. In all these examples, the objective is to
maximize the minimal quality over all problem instances by the deadline.

Another application relates to the continual computation model developed
by Horvitz [13]. In this model, an interactive system uses idle time in order to
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solve possible future problems so that those results will be ready when needed.
This approach can be used to solve anticipated problems during idle time of
an interactive system. When the user interrupts the computation by making
a specific choice, the system can respond using the best available solution for
that choice. When a set of problem instances are equally likely to be selected,
the goal of continual computation is to maximize the minimal quality of the
solutions available at the deadline. This is exactly the problem addressed in this

section.

Lemma 2. There exists an optimal sequence of contracts that (1) always im-
proves the solution of a problem with the lowest current solution quality and (2)
solves the problems in their original order in a round robin fashion.

Proof: The first part is true because any optimal sequence of contracts that
violates this rule can be easily transformed into a sequence that always improves
the lowest available solution quality. Any contract that does not improve the
minimal solution quality, does not improve the overall quality and has no imme-
diate effect on the performance profile. Therefore, the first contract that does
improve the minimal solution quality can be placed ahead of it. This leads to
a desired non-decreasing sequence of contracts. The second part of the lemma
is an immediate result of the first part and the symmetry among the initial set
of problem instances. Due to symmetry, one can choose arbitrarily among the
problem instances that share the lowest solution quality. In particular, the orig-
inal order can be used. W

Let X = (z1,x2,...) be a sequence of contracts that meets the requirements
of Lemma 2. Then, the performance profile of the interruptible algorithm solving
the m problem instances is as follows.

0 ft<zi4+zo+ ... + T
Qulay)if X7z <t < X a;
Qs(t) = .

i1 .
Qalzi) if YT a; <t < XM T

This is due to the fact that the first (and shortest) among the last m con-

tracts defines the overall quality.
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We want to find the minimal acceleration ratio ¢ such that Qp(ct) delivers
a result at least as good as the one returned by A when the deadline is known

(e, Qalmm))-

Lemma 3. For any ¢ > 1 the condition:

vz DFEIn o) > Qu(Y)
c m
holds if and only if:
i+m
Vi>1: Qua(wi) > Qa(d_ z; [em)
Jj=1

This lemma is a straightforward generalization of Lemma 1. The complete proof
is omitted.

Theorem 4. The minimal acceleration ratio needed to construct an interruptible

algorithm to solve m problem instances with a given contract algorithm is r =
(metymt,

The complete proof, similar to that of Theorem 2, is given in Appendix A.
Note that the ratio ("‘T’Ll)m+1 is obtained by a sequence of contracts defined by
a geometric series with run-times being multiplied by a factor of mT“ In other
words:

m+1 m+1

X = (1,5 () ).

Therefore, the construction described by Russell and Zilberstein [18] is the solu-
tion for the special case in which m = 1.

4. Handling quality uncertainty and stochastic deadlines

In this section we generalize the problem of sequencing contract algorithms
to situations in which some information about the deadline is available. It is
not surprising that there is no closed-form solution to the sequencing problem
in this case. Instead, the optimal sequence of contracts can be determined using
dynamic programming. To be able to apply dynamic programming, the problem
is formalized using a discrete representation of time (as opposed to the continuous
representation used in the previous sections).
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4.1. Stochastic deadlines

A stochastic deadline is specified by a prior probability distribution that
the deadline will occur at time ¢t measured relative to the activation time of the
contract algorithm.

Definition 3. A stochastic deadline is a probability distribution, Pp(t), of
the deadline over time.

The value of a result of quality g is defined by the following utility function.

Definition 4. A utility function, U(q), is the value of a solution of quality ¢
produced by the contract algorithm.

We assume that the utility function is non-decreasing. Therefore any strat-
egy to optimize utility is based on optimizing quality. The contract sequencing
problem in this case is defined as follows. Given a contract algorithm, a stochas-
tic deadline and an arbitrary utility function, find an optimal policy to activate
a sequence of contracts. An optimal policy is one that maximizes the expected
utility of the available solution at the deadline. This is one difference between
the goal in the previous section of optimizing worst-case quality. Note that the
technique developed in this section can be used to optimize the worst-case quality
(rather than expected utility). However, optimizing expected utility seems to be
a more appropriate objective when a stochastic deadline is given.

We approach the problem by defining a corresponding Markov decision pro-
cess (MDP) and finding an optimal policy by solving it. The states of the MDP
are (g,t) indicating the availability of solution of quality ¢ at time ¢. In addition,
there is a terminal state associated with each solution quality ¢, indicating reach-
ing the deadline with that quality. The latter states indicate termination of the
computation with quality ¢, while the states (g,t) indicate an intermediate state
of the computation. The action or decision taken at each non-terminal state is
to activate the contract algorithm with a new contract time 7.

Definition 5. Let Pp(m|n) be the probability distribution of the deadline oc-
curring at time m (m > n) given that it has not occurred so far and the current

time is n.
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Note that Pp(m|n) can be easily computed from the prior probability Pp(t)
as follows.

n

Pp(m[n) = Pp(m)/(1 - > _ Pp(i)) (5)

i=1
This can be easily obtained by observing that n stands for the proposition that
the deadline did not occur at time points {1,...,n} and by applying Bayes’ rule.

Definition 6. The completion probability of a contract 7 starting in state
(g,?) is

clt,7)= Y Pp(ilt)

i>t+T

The completion probability is the probability that the contract algorithm will
terminate before the deadline occurs.
We now define the following value function over states:

V(g t) = max{c(t,7) V(Qa(r),t +7) + (1-c(t,7)) Ulg)} (6)

The value of a contract 7 at state (g,t) depends on whether the deadline
occurs during the contract or not. If the contract algorithm completes its exe-
cution (with probability ¢(¢,7)), then the value depends on the new quality and
time. If the deadline occurs, a final state is reached with a reward that depends
on the quality of the existing solution. The value function is defined based on
the best action 7 in each state.

Theorem 5. The contracts that maximize the value function defined in Equa-
tion (6) provide an optimal solution to the contract sequencing problem for a
given stochastic deadline.

Proof: Because of the one-to-one correspondence between the sequencing prob-
lem and the MDP and because the stochastic performance profile and the deadline
satisfy the Markov assumption, it is obvious that an optimal policy for the MDP
provides an optimal solution to the sequencing problem. W

Many existing algorithms can be used to solve Equation (6). Because this
is a finite-horizon MDP with no cycles (time always moves forward), dynamic

programming can be used to determine the best action for each state in one
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sweep of the state space. The policy can be constructed off-line once for a given
deadline distribution, offering efficient reactive meta-level control.

One concern about these meta-level control policies is the size of the state
space which is affected by the choice of time units and quality units. Contract
time, in particular, may range over a large interval. The size of the policy,
however, can be reduced by selecting coarse units. The effect of unit size on
the effectiveness of meta-level control policies has been studied recently for the
progressive processing model [23]. Although these base-level deliberation modules
are somewhat different, the results are very encouraging. They show that by
varying the unit size one can achieve a dramatic reduction in policy construction
time with only a small relative error. For example, for a particular class of
progressive processing tasks, construction time was reduced from more than 88
minutes to less than 1 second, introducing a value error of less than 2%.

4.2. Handling quality uncertainty

Until now, we assumed that the quality produced by the anytime algorithm
is deterministic for any given contract. In practice, there may be some uncertainty

about the quality. Hence we generalize the performance profile as follows.

Definition 7. A stochastic performance profile, P4(q|t) of a contract algo-
rithm, A, denotes the probability of getting solution of quality g with contract

time t¢.

We assume that the quality of the result is stochastic, but observable. That
is, once the contract algorithm completes its execution, the actual quality of the
solution produced by the algorithm can be determined. The quality of a plan, for
example, is observable if it is measured by the sum of the costs of the operators.
However, when solution quality is defined as the approzimation ratio with respect
to the optimal solution it may not be observable. Hansen and Zilberstein [§]
have studied situations in which solution quality is partially observable. Their
approach to the problem could be used to augment the framework presented in
this paper.

The case of a stochastic performance profile can be solved using a simi-
lar approach by simply redefining the value function. The outcomes of actions
(contracts) in this case depend on the stochastic performance profile and the
likelihood of reaching the deadline, both of which satisfy the Markov assump-
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tion (i.e., they are independent of previous states, given the current state of the
computation). The value of a state is the expected value of the best contract 7
defined as follows.

V(g,t) = max{ c(t,7) D Pa(d|r)V(max(q,¢),t+7) + (1-e(t, 7)) Ulq)

7

(7)

In this case, it is necessary to average over all possible outcomes of a contract.

Note that if the new quality is lower than the current solution quality, the better

solution is used rather than the most recent one. As in the deterministic case,
the resulting policy is an optimal solution to the contract sequencing problem.

5. Optimal sequencing with no strict deadline

In this section we consider the case in which there is no strict deadline.
Instead, the value of the solution decreases over time as specified by a time-
dependent utility function [4,3].

Definition 8. A time-dependent utility function, U(qg,t), is the value of a
solution of quality ¢ produced by the contract algorithm and returned at time ¢.

The contract sequencing problem in this case is defined as follows. Given
a contract algorithm, its stochastic performance profile and an arbitrary time-
dependent utility function, find the best policy to activate a sequence of contracts.
As in the previous section, an optimal policy maximizes the expected utility of
the returned solution. Note that in this case the meta-level control problem is
not only to determining the next contract, but also when to stop the computation
and return the current best result.

Similar to the previous section, we approach the problem by defining a
corresponding MDP with states representing the current quality and time. The
action taken at each state, however, is either to terminate the computation and
return the current solution of quality g or activate the algorithm with a particular
contract 7. We define the following value function over states.
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Y Pald'|T)V(max(q,q'),t +7)
if d=continue with contract 7
V(g,t) = max (8)
¢ 1 U(g,t)
if d=terminate the computation

When a new contract is activated, the value is defined by the distribution
of output quality and the contract time. If the computation is terminated, the
value is the utility of returning a result of quality ¢ at time ¢.

Theorem 6. The policy that maximizes the value function defined in Equa-
tion (8) provides an optimal solution to the contract sequencing problem for a
given time-dependent utility function.

Proof: Again, this is an immediate result of the one-to-one correspondence be-
tween the optimal sequencing problem and the above MDP and because the
stochastic performance profile satisfies the Markov assumption. H

Using dynamic programming, the optimal policy can be constructed off-line
once for a given time-dependent utility function, offering an efficient, reactive
meta-level control.

6. Related work

Meta-level control of computation has been studies extensively over the past
decade. Horvitz has studied a wide range of meta-reasoning techniques for such
applications as sorting, theorem proving, traveling salesman problems, computer
graphics, and most notably flexible diagnosis algorithms [10-12]. Horvitz has
identified several classes of functions to describe the utility of computation, in-
cluding urgency, deadline, and urgency-deadline [11]. Urgency refers to utility
functions that assign a cost to the delay in action. The deadline pattern refers
to cases in which results are not valuable at all if the delay is greater than a
certain constant. The urgency-deadline requires consideration of both the cost
and availability of time. Given such utility functions, Horvitz describes a variety
of meta-reasoning strategies for interruptible problem-solving techniques. Dean
and Boddy have developed a stopping criterion for an anytime planning algo-
rithm [4,3]. The model uses a time-dependent utility function, similar to what
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we use in Section 5. Russell and Wefald have developed a general framework for
meta-reasoning and applied it to control search in game playing programs [17].
Hansen and Zilberstein have developed a comprehensive solution to the problem
of monitoring and control of interruptible anytime algorithms [8,9]. The solution
covers several probabilistic representations of performance profiles and utility
functions. An important part of the solution is the ability to factor the cost of
monitoring the computation and/or the state of the environment. Sandholm and
Lesser have presented an algorithm for determining the optimal stopping policy
for incomplete decision algorithms given a cap on the number of steps [19]. The
technique is based on developing a decision tree that includes revised likelihood
of reaching a decision within a certain number of steps, given that no decision is
currently available. The work also shows how to derive a cap on the number of
steps when it is not given as part of the problem definition.

What is common to these deliberation scheduling techniques is a formal ap-
proach to meta-reasoning based on probabilistic information about alternative
computations and the use of decision-theory to maximize the expected value of
computation. The value of computation is an extension of the value of infor-
mation, taking into account the cost of computation. The optimality of the
meta-level control depends on assumptions that sometimes limit the sequences of
computations considered. For example, the myopic meta-level control assump-
tion selects the best single computational step as long as it has positive value and
refrains from the complex evaluation of long sequences. In this paper, we use a
relatively simple model of computation (based on reactivating a contract algo-
rithm with a particular allocation), allowing us to solve the global optimization
problem.

Our analytical solution to the contract sequencing problem in Section 3 was
inspired by the work of Baeza-Yates, Culberson, and Rawlins on searching an
unbounded region for an object [1]. The problem involves a “robot” whose goal
is to find a distinguished object in the plane. For example, the object may be a
point that in n steps away from the robot on a straight line, but the robot does
not know the direction or the distance to the point. It is assumed that the robot
can move one step at a time and that it cannot tell the distance to the point,
but it can recognize it when it reaches the destination. The goal is to find an
optimal search strategy that minimizes the distance traveled by the robot before
it reaches the destination. Apparently, this problem is similar to the problem of
sequencing a single contract algorithm. The analogy between the two problems
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is not obvious, but once formalized, they present similar mathematical questions.
In particular, Lemmas 1 and 3 in this paper provide a foundation to solving the
problem of searching in the plane. Furthermore, the analytical work reported
here offers a dramatic simplification of the proofs presented in [1].

The contract sequencing policies developed in Sections 4 and 5 follow sev-
eral other recent applications of dynamic programming to construct monitoring
policies for managing computations. Such control policies improve over the pre-
viously used myopic approaches to control computations. The latter select the
next single computational step with the highest value as long as its comprehensive
value is positive. One of the early examples of using non-myopic control policies
has been reported by Einav and Fehling [7]. They have developed an algorithm
to construct generate-and-test policies to solve a problem with several given non-
interruptible methods. Unlike contract algorithms, these methods do not offer
a tradeoff between computation time and quality. Another early example is the
technique developed by Russell, Subramanian, and Parr for sequencing a set of
rules given a stochastic deadline [16]. Their dynamic programming approach
provides a globally optimal schedule. Hansen and Zilberstein have developed
similar policies to control interruptible anytime algorithms [8]. More recently,
the approach has been applied successfully to control a complex progressive pro-
cessing task structure [22]. These examples demonstrate that MDPs can be used
effectively to handle uncertainty in computation and develop optimal meta-level

control policies.

7. Conclusion

We have analyzed the problem of optimal sequencing of contract algorithms.
The problem arises when there is uncertainty about the amount of time avail-
able for problem-solving with contract algorithms. When no prior information
is available about the deadline, the best sequence can match the performance of
the contract algorithm when it runs on a processor that is 4 times faster. No
slower acceleration can guarantee that performance. This result is generalized to
the case in which an interruptible system must solve multiple problem instances.
When stochastic information is available about the deadline and about the per-
formance of the contract algorithm, the optimal sequence of contracts can be
constructed using dynamic programming. Finally, we solve the case in which no
deadline is specified but the utility function is time-dependent.



Zilberstein, Charpillet, and Chassaing / Optimal Sequencing of Contract Algorithms 19

There are several obvious extensions of this work that have not been dis-
cussed in the paper. The sequencing policies developed is Sections 4 and 5 are
extremely general. They can be applied to different variations of the problem we
consider. For example, there may be multiple problem instances to be solved, the
utility function over the set of problems may be arbitrary (rather than minimal
quality), and there may be a given prior distribution over the problem instances
(indicating the likelihood a particular solution may be needed at the deadline).

Generalizing the analytical results of Section 3 is a harder task. When
multiple problem instances are solved, it is interesting to find an optimal se-
quencing strategy to maximize the average quality rather than minimal quality.
This turned out to be a much harder problem that remains open. Once average
quality replaces the minimal quality, the equations we get are much harder to
solve in closed form.

To summarize, we show how to optimally sequence contract algorithms so as
to maximize their utility in interruptible domains. These results provide useful
guidance for embedding contract algorithms in a wide range of practical appli-
cations. In addition, they show that a large body of work on planning under
uncertainty (using Markov decision processes) is applicable to meta-level control
of computation.
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Appendix A: Proof of Theorem 4

From Lemma 3, for any sequence of contracts X = (z1,z2,...), 7 must
satisfy:
(:L‘l + 22+ ... + xi—|—m)
m

Vi>1l: Qu

< Qua(rzi)
From the strict monotonicity of Q4 we get:

i+m
Vi>1: ijgmrxi.
j=1



20  Zilberstein, Charpillet, and Chassaing / Optimal Sequencing of Contract Algorithms

Setting g; = Zj’:l xj, we can rewrite the previous equation as:
Vi>2: giym < mr(gi — gi-1)- (9)

We know that the sequence (g1, g2, ...) is an increasing sequence of positive num-
bers. As before, let p be defined as:
p= inf{g—z, %, - gi—+1, )
gi 92 gi
It is clear that p > 1. From Equation 9 we obtain

Vi>2: gi>gi1+ Jitm
mr
or

i o, L Giem

gi—1 mr gi—1

1 g giv1 gitm
mrgi—-1 gi Ji+m—1
pm—|—1

>1+ .
mr

Finally, we deduce that:

pm—i—l

>1 .
pzit mr

Equivalently, because p > 1, we get:

m—+1

r>_P
m(p — 1)

The function p — ”l:n_+11 reaches its minimum on the interval (1, +00) when

_ mtl 1ym41
p = 2L therefore r > (Zebl)ym+l,

The ratio ("‘Tﬂ)m+1 can be obtained by a sequence of contracts defined by

a geometric series with run-times being multiplied by a factor of T”T‘H In other

words:

m—+ 1 m-+1

X = (1, () ),

m—+1 )m—l—l‘ B

Thus the best possible acceleration ration is r = (7=
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