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will be able to load a particular domain definition
and then run the system by specifying a particular
problem using the dialog area. The system will then
simulate the physical domain and the agent’s be-
havior. The value of computation and a visual rep-
resentation of the physical domain will be displayed
during the simulation.

5 Conclusion

We have presented the three layers of AT-RALPH
that together offer an integrated programming en-
vironment for constructing utility-driven, real-time
agents. The central reasoning component of AT-
RALPH is composed of elementary anytime algo-
rithms that are combined together by the compiler
into one anytime decision procedure. Our efficient
meta-level control solves the problem of scheduling
the elementary anytime components so as to max-
imize the overall performance. Laffey et al [1988]
claim that “ad hoc techniques are used for mak-
ing a system produce a response within a specified
time interval”. Our approach has many advantages
over current techniques: it achieves optimal perfor-
mance not just acceptable performance; it can han-
dle situations in which resource availability is un-
known at design time; it effectively integrates plan-
ning and scheduling; and it provides machine inde-
pendent real-time modules.

5.1 Further work

There is still a significant amount of system work
to be done to generalize the various components of
AT-RALPH. Another important task is to expand
the “anytime” concept to include sensing and ac-
tion. Moving toward a target in order to get a better
view and aiming a gun at a target are examples of
interruptible anytime actions. Similarly an anytime

sensing procedure to estimate the size and location
of an object can be developed by varying the number
of samples and their resolution.

There is however an important distinction between
sensing and action. Sensing may be assumed to have
no relevant effect on the state of the domain while
actions are intended to transform the state of the
domain. As a result, it is possible to treat an any-
time sensing component just as anytime computa-
tion and to apply to it the same compilation method.
The contract-to-interruptible conversion cannot ap-
ply to actions, however, because re-initiating the ac-
tion may result in different effects because of the
changed initial state (consider, for example, gem
polishing with increasingly fine abrasives). Further
work is needed in order to integrate sensing and ac-
tion into the framework. Our ultimate goal in this
project is to construct an integrated programming
environment for developing real-time agents that act
by performing anytime actions and make decisions
using anytime computation.
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use them to generate the performance profile of the
complete system and the monitor can use them for
a quick evaluation of the utility of continued com-
putation. This utility, also defined as the value of
computation, is determined in the following way:

Given an algorithm A, let S;, represent the state of
the domain at time ¢;, let ¢;, represent the quality
of the results of the top-level interruptible anytime
algorithm at time #;. U4(S, q) represents the utility
of results of quality ¢ in state S. The purpose of the
meta-level control is to maximize Ux4(Sy,, ¢+,). Due
to uncertainty concerning the quality of the results
of the algorithm, the expected utility of the results
in a given state S at some future time ¢; is computed
by:
q

The probability p(g:;, = ¢) is provided by the perfor-
mance profile of the algorithm. Due to uncertainty
concerning the future state of the domain, the ex-
pected utility of the results at some future time ¢; 1s
computed by:

U4(ts) =Y p(Si, = S)UL(S, t:)

The condition for continuing the computation at
time ¢ for an additional At time units is therefore

VOC > 0 where:
VOC = Uyt + At) — U4(t)

In some cases it is possible to separate the utility of
the results from the time used to generate them. In
such cases the value of computation can be expressed
simply by:

VOC = Uf (q4a1) — U4 (¢:) = TC(t, At)

where U/{'(q) is the utility of results of quality ¢,
and T'C(t, At) is the time cost of At time units at
time ¢. This assumption, when valid, simplifies the
calculation of the value of computation.

4 The run-time system

The purpose of the run-time system is primarily to
monitor the execution of the compiled anytime algo-
rithm. It also provides a standard interface between
the implemented agent, the physical environment,
and the user interface. Figure 7 shows the data flow
between the main components of the run-time sys-
tem. Sensory input is used to update the state of
the environment as perceived by the agent. The
state is then used in order to compute the cost of
time that, together with the current best results and
the performance profile of the main decision proce-
dure, is used to determine the value of computation.

Control Action

Effectors
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Environment

Sensors

—

Anytim
Decision Procedure

<
)

Current Best Results Anytime Library

[\ 1

Sensor Data
Processing
Value of -

Computation y

Model of Physical
Environment
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/ %

Control of

Action Effectors Decision Procedure

Figure 7: Data flow diagram of the run-time system

The monitor decides, based on the value of compu-
tation, whether to interrupt the decision procedure
and apply the current best results. The system has
two different modes: (1) Single decision mode; and
(2) Continuous decision mode. In the first case the
anytime algorithm is provided with a single set of
inputs. It computes the results and may be inter-
rupted by the monitor when the value of computa-
tion becomes negative. In the second case the algo-
rithm is provided with an input generator that gen-
erates many instances of a problem. The run-time
system restarts the algorithm with a new instance
of the problem after each interruption/termination.
This case models the behavior of an autonomous
robot optimizing performance over a “history”.

Another component of the run-time system, to be
added in the future, is a debugging tool to allow the
programmer to perform special operations that are
unique to anytime computation such as: interrupt-
ing an algorithm and forcing its termination, exam-
ining the best result so far while the algorithm is
running, or initiating events that change the cost
of time to see how they affect the behavior of the
monitor and the agent.

Figure 8 shows how the user interface of AT-RALPH
will look in its complete implementation. The user



DAG representing of F. The task of the compiler in
this case is to find for each total allocation of time
t, and input quality @Q;5, the run-times #1,%9,%3,%4
(t1+ta+1t3+ts =1t) for the modules G, H, I, and J
that maximize the expected quality of results (ouz.
For each given allocation of time it is simple to find
the expected quality of results based on the DAG
representation and the performance profiles of the
elementary anytime functions. In order to find the
optimal allocation we have implemented an efficient
search algorithm described below.

The time allocation algorithm is based on hill-
climbing search. It starts with an equal amount of
time allocated to each anytime component. Then it
considers trading s time units between two modules
so as to increase the expected quality of the results.
As long as it can improve the expected quality, it
trades s time units between the two modules that
have maximal effect on output quality. When no
such improvement is possible with the current value
of s, it divides s by 2 until s reaches a certain mini-
mal value. At that point, it reaches a local maxima
and returns the best time allocation it found. As
with any hill-climbing algorithm, it suffers from the
problem of converging on a local maxima.

Time Allocation Algorithm

for each Q;,, € QUALS-TABLE
for each T' ¢ TIME-TABLE
s «— initial-resolution(T)
ti—T/n Vi:1<i<n
repeat
while 3¢, 7 such that
E(Qout(Qm, t1,..,t —s,...,t; + s, ...,tn))
> E(Qout(Qin, tl, ceey tn))
let ¢, 7 be the ones that maximize E(Qout)

t; —t;, — s
t; —t; +s
end
s — s/2

until s < min-time-resolution
CPP[Qin, T] — [Pr(Quut), t1, o o]
end
end

Complexity

The current version of the system uses discrete per-
formance profiles stored in a two dimensional table
(with input quality and run-time as indices). Linear
approximation is used to compute the performance
distribution for points that do not match exactly one
of the table entries. The allocation algorithm there-
fore has to fill-in this two dimensional table. For
each entry in the table, the complexity of the algo-

rithm is O(Kn?logT), where K is a small constant
representing the number of times s units of time are
traded before s is divided by 2, n is the number
of modules and T is the total run-time. Since the
number of modules used to define a new function is
normally small the overall complexity of the algo-
rithm is dominated by the accuracy of the compiled
performance profile (a system parameter) and is in-
dependent of the program itself.

Finally, the compiler inserts in the original function
the necessary code to control internal time alloca-
tion. For this purpose, the compiler replaces each
call to an anytime algorithm by an activation of the
following form:

(at ’<anytime-function> :time <run-time>)

It activates the algorithm <anytime-function>
as a contract algorithm with time allocation
<run-time>. The amount of time allocated to each
module is determined at run time by the total allo-
cation and a simple lookup in the compiled perfor-
mance profile. For example, the function defined in
Figure 6 would be redefined as:

(defun F (u &key iq time &aux x y z)
(setf x (at ’(G u) :time
(TA CPP-F iq time 1)))
(setf y (at (H x) :time
(TA CPP-F iq time 2)))
(setf z (at ’(I x) :time
(TA CPP-F iq time 3)))
(at ’(J y z) :time
(TA CPP-F iq time 4)))

Note that TA is a general time allocation function
that returns the appropriate time allocation based
on the conditional performance profile of F (CPP-F),
the initial input quality and total run-time.

3 Efficient meta-level control

Meta-level control of reasoning has been a leading
technique in implementations of bounded rationality
[Dean and Boddy, 1988; Doyle, 1990; Horvitz, 1987;
Russell and Wefald, 1991]. In an early stage of these
implementations it became apparent that gathering
the necessary meta-level knowledge is a complicated
task that can dominate the base-level problem it-
self. Tt was necessary therefore to develop a system
in which the meta-level knowledge could be gath-
ered automatically. Another goal was to be able to
solve the meta-level decision problem quickly. This
is exactly what we achieve by using conditional per-
formance profiles. The compiler can automatically
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Figure 5: Conditional performance profile of TSP

achieved with run-time ¢. These statistics form the
basis for the construction of the performance profile
of the algorithm.

Quality measures

Russell and Zilberstein [1991] present three types
of performance profiles and argue that the perfor-
mance nterval profile is the most appropriate for
integrating anytime algorithms. However, for the
purpose of this paper it will be easier for the reader
to think about a performance profile as a mapping
from computation time to the expected quality of
results. This quality can be measured in three dif-
ferent ways: Certainty — where probability of cor-
rectness determines quality; Accuracy — where error
bound determines quality; or Specificity — where the
amount of detail determines quality. In principle,
performance profiles can also be multidimensional,
expressing, for example, both the certainty and ac-
curacy of the results. However, we do not support
multidimensional performance profiles in the current

version of AT-RALPH.

Conditional performance profiles

To be able to properly combine anytime algorithms
one has to take into account the fact that the qual-
ity of the results depends not only on time alloca-
tion but also on properties of the input, most no-
tably its quality. Performance profiles in our system
are therefore conditional. They consist of mappings
from input quality and run-time to probability dis-
tribution of output quality:

CPP : Qin xT — Pr(Qout)

Figure 5 shows the conditional performance profile
that we got for the TSP algorithm with several dif-

(defun F (u &aux x y z)
(setf x (G u))
(setf y (H x))
(setf z (I x))

Qy2)

(defun F (u)

Q H G W (G wy

6(a) Lisp definition of F

in, Qin

out, Qout

6(b) DAG representation of F

Figure 6: Compiling a straight line program

ferent initial input qualities?.

2.2 Compilation

In the current prototype of AT-RALPH we solved
the compilation problem for the case where com-
pound (non-elementary) anytime algorithms are re-
stricted to composition of other anytime algorithms.
An equivalent assumption is that the code of a com-
pound algorithm can be written as a straight line
program® with anytime algorithms as basic opera-
tions. For example, Figure 6(a) shows a definition
of a compound anytime function F both as a straight
line program (top version) and as a composition of
anytime functions. Every straight line program has
a corresponding DAG (Directed Acyclic Graph) rep-
resentation where each node corresponds to one vari-
able evaluation with a directed arc going to each
function using that value. Figure 6(b) shows the

*Problems with a particular desired initial quality
were generated using a different TSP algorithm.

® A straight line program is a sequence of expressions
of the form (setf u (f v1...vn)) where « is a new variable
and v1...v, are program arguments or existing variables.
There is a trivial one-to-one mapping between functional
composition and straight line code.
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struction. In addition, this constant can be reduced
by scheduling the contract algorithm on a parallel
machine. We have derived, for example, an opti-
mal schedule that reduces the constant to 3 with
2 processors. The parallel scheduling options are,
however, not trivial. We now turn to a detailed look
at the compilation process.

Definition 1 Compilation of anytime algorithms is
the process of deriving a contract algorithm with an
optimal performance profile from a program com-
posed of several anytime algorithms whose perfor-
mance profiles are given.

Figure 3 shows the input and output of the com-
piler. Its input includes a user defined Lisp program
composed of anytime components and a set of con-
ditional performance profiles stored in a library. The
task of the compiler is to produce a new version of
the program that includes code to control the dis-
tribution of time between the components so as to
maximize the overall performance for any given time
allocation. It also creates a performance profile for
the complete program based on optimal time alloca-
tion. The rest of this section describes the compila-
tion process in detail.

2.1 Library of performance profiles

Once an elementary anytime algorithm is completed,
its performance profile has to be computed and en-
tered into the anytime library. The task of finding
the performance profile of an algorithm can be quite
complicated. In some cases, performance profiles
can be constructed by a mathematical analysis of
the anytime algorithm. For example in many itera-
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Figure 4: Quality map of TSP algorithm

tive algorithms, such as Newton’s method, the error
in the result is (bounded by) a function of the num-
ber of iterations hence the performance profile can
be constructed once the run-time of a single iteration
is determined. In general, however, a mathematical
analysis of the code is impossible. A general and
practical approach is to compute the performance
profile by gathering statistics on the performance of
the algorithm in representative cases? (or learning it
while the agent acts in the world). The performance
profiles stored in the library can also be approxima-
tions to be refined within the context of a particu-
lar domain of application. At present we compute
conditional performance profiles of the elementary
anytime components by running a user-defined spe-
cial program to gather the necessary statistics. In
the future however, we plan to automate this task
within our system.

We have implemented, for example, a randomized
anytime algorithm for the Traveling Salesman Prob-
lem (TSP) that is based on tour improvement3.
Quality in this case was measured by the percentage
of tour length reduction (with respect to the origi-
nal random tour). Figure 4 shows the quality map
that we generated by running the algorithm with
randomly generated input instances. FEach point
(t,q) represents an instance for which quality ¢ was

2Representative problem instances are randomly gen-
erated based on prior knowledge of the problem domain.

°In the general case of tour improvement procedures,
r edges in a feasible tour are exchanged for r edges not in
that solution as long as the result remains a tour and the
length of that tour is less than the length of the previous
tour. See also [Lawler et al., 1987].
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precision of the domain description.

Basic applications of anytime algorithms have been
introduced by Boddy and Dean [1989] for solving
a path planning problem and by Horvitz [1987] for
real-time decision making in the health care domain.
In this work we extend the use of anytime algorithms
to the construction of complex planning systems. It
is unlikely that a complex system would be devel-
oped by implementing one large anytime algorithm.
Systems are normally built from components that
are developed and tested separately. In standard al-
gorithms, the expected quality of the output is fixed,
so composition can be implemented by a simple call-
return mechanism. However, when algorithms have
resource allocation as a degree of freedom, incremen-
tal scheduling and constant monitoring are required
to guarantee optimal utilization of resources.

Figure 1 illustrates our approach. It shows an any-
time path planning algorithm that receives its input
from an anytime vision module. The quality of vi-
sion is measured in terms of precision of the domain
description. The quality of path planning is mea-
sured in terms of specificity of the suggested plan.
Our compilation scheme combines these two mod-
ules into one anytime path planning algorithm that
can automatically distribute any given amount of
time between the two components so as to maximize
the overall quality of results. The rest of this paper
describes in detail our solution to the problem of in-
tegrating and controlling anytime algorithms. The
result is an efficient and cheap meta-level control for
real-time decision making that separates the perfor-
mance components from the schedule optimization
mechanism and automates the second task.

The next three sections of the paper correspond to
the three conceptual layers of AT-RALPH as illus-
trated in Figure 2. In Section 2, we describe the
compilation of anytime algorithms — a process that

Run—-Time System

Model of Bounded Rationality
Compilation of Anytime
Algorithms

Figure 2: The three conceptual layers of AT-RALPH

creates an optimal anytime algorithm from a pro-
gram composed of anytime components. Section 3
describes the theoretical framework used to deter-
mine the value of computation and the meta-level
control of AT-RALPH. In Section 4, we describe the
programming environment and run-time system. Fi-
nally, we summarize the benefits of our approach and
discuss further work.

2 Compilation of anytime algorithms

The compilation of anytime algorithms, a central
concept in our system, is an automated process that
extends the idea of functional composition to any-
time computation. Before explaining it in detail, we
must make a distinction between interruptible algo-
rithms and contract algorithms. Interruptible algo-
rithms produce results of the quality “advertised” by
their performance profiles even when interrupted un-
expectedly; whereas contract algorithms, although
capable of producing results whose quality varies
with time allocation, must be given a particular time
allocation in advance. The greater freedom of design
makes it easier to construct contract algorithms than
interruptible ones. In fact the compilation process
described below produces a contract algorithm. To
make this algorithm interruptible we use the result

from [Russell and Zilberstein, 1991]:

Theorem 1 For any contract algorithm A, an in-
terruptible algorithm B can be constructed such that

for any particular input Qp(4t) > Qa(1).

Note that @ 4(t) represents the actual quality of the
results of A with time allocation ¢. The construction
of the interruptible algorithm is based on repeatedly
restarting the contract algorithm with exponentially
increasing allocation of time. Some readers may
wonder whether the constant, 4, could result in a
significant degradation of performance. Our expe-
rience, however, shows that in dynamic situations
the flexibility of using an anytime interruptible al-
gorithm can offset the slowdown caused by its con-
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Abstract

Anytime algorithms have attracted grow-
ing attention in recent years as a key mech-
anism for implementing models of bounded
rationality. The main problem, however,
as with planning systems in general, is the
integration of the modules and their inter-
face with the other components of the sys-
tem. We have implemented a prototype
of AT-RALPH (Anytime Rational Agent
with Limited Performance Hardware) in
which an off-line compilation process to-
gether with a run-time monitoring compo-
nent guarantee the optimal allocation of
time to the anytime algorithms. The cru-
cial meta-level knowledge is kept in the
anytime library in the form of conditional
performance profiles. These are extensions
of an earlier notion of performance descrip-
tion — they characterize the performance
of each elementary anytime algorithm as
a function of run-time and input quality.
This information, used by the compiler
to produce the performance profile of the
complete system, is also used by the run-
time system to measure the value of com-
putation and monitor the execution of the
top-level procedure in the context of a par-
ticular domain. The result is an efficient
and cheap meta-level control for real-time
decision making that separates the perfor-
mance components from the schedule op-
timization mechanism and automates the
second task.

1 Introduction

Our objective has been to develop an efficient meta-
level control for utility-driven, real-time agents.

These agents are designed to operate in complex do-
mains where future states and utility change over
time are unpredictable. The complexity of these do-
mains on the one hand and the limited computa-
tional resources available to the agents on the other
hand have led us to a solution based on bounded
rationality and anytime computation. Anytime
algorithms! have attracted growing attention in re-
cent years as a key mechanism for implementing
models of bounded rationality. The main problem,
however, as with planning systems in general, is the
integration of the anytime components into a sin-
gle, efficient, decision making procedure and inter-
facing this procedure with the other components of
the agent — perception and action. In AT-RALPH,
this problem is solved through an off-line compila-
tion process together with a run-time monitoring
component that guarantee the optimal allocation of
time to the elementary anytime algorithms.

Anytime computation introduces a tradeoff between
run-time and quality of results. In order to optimally
control this new degree of freedom we introduce con-
ditional performance profiles that give a probabilistic
description of the quality of the results of an algo-
rithm as a function of run-time and input quality (or
a set of properties of the input). This is an exten-
sion of an earlier notion of performance profile that
depends on run-time only.

Consider for example an anytime hierarchical plan-
ner whose quality of results is measured by the level
of specificity of the plan. Obviously, the specificity
of a plan affects its execution time and hence has
influence on the efficiency of the agent. We have
recently implemented such an algorithm for hierar-
chical path planning. Its conditional performance
profile describes how the quality of the plan depends
on run-time as well as on input quality, that is, the

! Anytime algorithms are algorithms whose qual-
ity of results improves gradually as computation time
increases.



