The utility of planning

Shlomo Zilberstein
University of Massachusetts
Department of Computer Science
Lederle Graduate Research Center, Box 34610
Ambherst, MA 01003-4610
shlomo@cs.umass.edu

Abstract

Evaluation and comparison of existing planning
systems is hard because they disagree on the funda-
mental role of planning, on evaluation metrics, and
on the notion of success and failure. This paper
suggests a decision-theoretic approach to evaluate
planning systems that generalizes the role of plan-
ning in intelligent systems. The planner is viewed
as a source of information that is used by an execu-
tion architecture in order to select actions. A plan-
ner is only as good as the effect it has on the per-
formance of an operational system. Our approach
calls for a clear separation between the planning
component and the execution architecture and for
evaluation of planning systems within the context
of a well-defined command, planning and execu-
tion environment. The evaluation is based on the
expected utility of the domain histories that are
induced by the planning component.

1 Evaluating planning systems

The task of evaluating planning systems becomes exceedingly
hard as one tries to measure their comprehensive value. The
evaluation task becomes even harder when it is used to study
the qualitative structure' of planning systems. At the same
time, one can trivialize the evaluation by looking at a lim-
ited set of isolated performance measures. In this section we
examine the various aspects of planning systems that com-
plicate their evaluation.

1.1 Base-level evaluation

Base-level evaluation of planning systems refers to analyzing
the performance of the planner using a variety of possible
metrics. A number of reasons make this type of evaluation
insufficient for comparison purposes.

First, there is no unified view of what constitutes a planning
task. As a result, one must compare planners that essentially
address different problems. In the early days of Al there used
to be a more unified view of planning. For a long time plan-
ning has been strongly associated with problem solving and
was formulated using domain states, operators, and goals.
The planning problem, generally stated, was to find a set
of operators whose execution (subject to some ordering con-
straints) will change a given initial state to a state satisfying
the goals. Over the years, this approach has been proven
unsatisfactory and oversimplified. In particular, it ignores
the execution process embedded in any real planning system,

!The term laws of qualitative structure was used first by
Al Newell and Herb Simon [10] in their Turing Address to
describe the qualitative generalizations and regularities that
have become the most significant, lasting results of scientific
research.

Planning Agents

the possibility of partial goal satisfaction, and recovery from
failures. More recent implementations of planning systems
adopted a variety of different and sometimes incompatible
definitions of the problem, making it hard to compare and
evaluate systems. How can PRS-style planning, for example,
be compared with BPS-style planning? How can an adaptive
planner that generates new plans be compared with a planner
that only retrieves existing plans?

Another difficulty in evaluating planning stems from the
multiple dimensions that characterize any planning system.
These dimensions include correctness, the quality of solu-
tions, the failure rate, the resources required to generate
plans, robustness of the planner, graceful degradation, and
user friendliness. Some of these performance measures are
hard to evaluate individually. It is much harder to compare
systems that have different strengths and weaknesses along
those dimensions. For example, suppose that system A gener-
ates reliable plans (failure rate = 2%) within 60 seconds, and
system B generates less reliable plans (failure rate = 10%)
within 25 seconds. How can one determine which system is
“better”? Obviously, much more information about the na-
ture of the task and the implications of failure is needed in
order to compare these two systems. When one considers a
dozen of different performance measures and a system operat-
ing in a complex, non-deterministic environment, evaluation
becomes very hard.

In some domains, such as medical diagnosis and treatment,
human performance is used as the ultimate benchmark. This
complicates the evaluation of base-level performance due to
subjective human judgment, inconsistency of human knowl-
edge, and the complexity of modeling human decision-making
processes.

The complexity of the evaluation process requires the use of
both analytical and experimental tools. The complexity of
domains such as air traffic scheduling, and the multidimen-
sional evaluation criteria make it almost impossible to model
and analyze the behavior of planning systems using analyti-
cal tools alone. Moreover, analytical tools are normally used
to derive worst case, asymptotic complexity, while a superior
planning approach should be selected based on ezpected per-
formance with respect a particular probability distribution of
problem instances. As a result, empirical methods will play
an important role in this process.

1.2 Additional performance metrics

Besides the above base-level performance measures, there is a
set of additional metrics that describe important features of
planning systems. One set of measures evaluates the design
of planners. These measures include generality over problem
domains, scalability, ease of implementation and ease of anal-
ysis. As researchers who are primarily interested in revealing
the qualitative structure of planning systems, we have only
limited interest in planning systems that exhibit good per-
formance in one particular domain but are hard to analyze
or apply to different domains. Understanding and evaluating

SIGART Bulletin, Vol. 6, No. 1

the design are at least as important as the evaluation of base-
level performance. The ultimate goal of evaluation should be
to understand the structure of a planner and to answer such
fundamental questions as: what makes a system successful
in a certain environment and how do different performance
measures interact.

As the focus of attention moves from base-level performance
to understanding the qualitative structure of planning sys-
tems, qualitative evaluation becomes more important and
more feasible than quantitative evaluation. The main goal
of such evaluation is to identify the features of planning sys-
tems that enable them to cope with resource limitations,
uncertainty, and failure. Understanding the implications of
these factors on the design of planning systems is much more
important than evaluating the particular performance of a
planning system on a single problem.

To summarize, evaluation of planning systems is a hard pro-
cess since the success of a planner can be measured along
many different dimensions. Evaluation is especially hard
when used to understand the structure of a planner that per-
forms well in a certain set of domains.

The rest of this paper addresses two major aspect of evalu-
ation: the need for a unified view of planning and a unified
approach to evaluation of planning systems. Section 2 ex-
amines the role of planning in intelligent agents. Section 3
argues that planners should be evaluated within the context
of a complete system and with respect to a particular ex-
ecution architecture. Section 4 outlines a decision-theoretic
framework that generalizes the role of planning and facilitates
evaluation and comparison of different planning paradigms.
Finally, Section 5 summarizes our approach.

2 The role of planning revisited

Evaluation and comparison of planning systems can be sim-
plified if we redefine and generalize the role of planning in
intelligent systems. Planning is a deliberation process aimed
at helping an agent to act intelligently in the world. Various
mechanisms have been used in planning systems to achieve
this goal. The following list summarizes some of these mech-
anisms:

1. Plan synthesis using domain knowledge and such prin-
ciples as means-ends analysis and precondition achieve-
ment have been used since the early days of Al. These
principles have been widely used by planning systems
such as STRIPS [3], NOAH [11] and their descendents.
Plan synthesis reduces future deliberation and helps the
agent achieve its goals .

2. Projection of possible future world states using domain
knowledge. Such projections can improve performance
by taking actions that correspond to anticipated events
and by taking actions that can avoid anticipated prob-
lems. These principles are used in stochastic planners
such as [4, 7].

3. Forming constraints on future action improve perfor-
mance by reducing future deliberation and focusing fu-
ture search on feasible plans. As suggested in [12], simi-
lar constraints can be derived with respect to any aspect
of a plan including protection conditions, resources, au-
thority requirements, spatial constraints, etc.

4. Retrieval of existing plans from a library, or case-based
planning [6], can further reduce run-time deliberation
and utilize external knowledge and expertise.

Planning Agents

5. Causal and temporal reasoning can improve perfor-
mance by selecting actions that have maximal antici-
pated effect on the level of goal achievement.

Regardless of the planning techniques that are used, the infor-
mation provided by the planner combined with an appropri-
ate execution architecture increases the agent’s performance.
In that sense, planners are only as good as their contribution
to the performance of the agent.

Analyzing and evaluating planning systems based on the
quality of the behavior that they produce may seem quite
natural, but this criterion has not been the primary com-
ponent of evaluation in the past. Instead, planning systems
have been widely evaluated based on correctness or optimal-
ity of the solutions, deemphasizing the role of planning in
performance improvement. The hidden assumption was that
an agent needs a correct (or sometimes “optimal”) plan and
that executing a correct plan always leads to maximal goal
achievement. But this assumption hardly holds in any real-
world situation. Soundness and completeness of planners are
important properties, but they provide little insight into the
practical value of a planning system.

Overall performance on the other hand is a metric that sum-
marizes many of the measures that were introduced in the
previous section such as the quality of solutions, the failure
rate, the resources required to create the plan, and robustness
of the planner. In order to develop a methodology to evaluate
overall performance and better understand different planning
systems, we must first recognize some basic facts regarding
the role of planning in intelligent systems. The main issues
that need to be explicitly addressed are discussed below.

2.1 The goal of planning

Planning helps agents to choose actions intelligently. The ul-
timate goal of an agent is not to derive “optimal” plans, or
even “correct” ones, but rather to transform the world into
a desired state and thus perform a certain task. One can de-
scribe such goals using time-dependent utility functions that
define the desirability of certain world configurations. Time-
dependent utility functions extend the traditional notion of
goals (by allowing partial goal satisfaction) and the tradi-
tional notion of deadline (by allowing gradual loss of utility
as a function of time). Given such a utility function, a planner
should be evaluated within the context of a complete working
system. Other properties of planners such as complexity, cor-
rectness, and completeness are very important but they are
insufficient for overall evaluation or comparison purposes. In
most cases we cannot equate “correct” planning with good
agent performance.

2.2 Planning as a deliberation process

Planning is a reasoning process and as such it does not im-
mediately change the external world or achieve the ultimate
goals of an agent. As a result, one must view the outcome
of a planning process as a potentially valuable piece of in-
formation. The value of this information depends on three
factors:

1. The objective quality of the plan that reflects the qual-
ity of the solution to the problem defined by the initial
planning conditions.

2. The time at which the information that the planner pro-
duced becomes available to the system and the extent
of change in the domain.

SIGART Bulletin, Vol. 6, No. 1

3. The capability of the agent to interpret the information
produced by the planner and to exploit it effectively.

Standard decision-theoretic techniques can be used to deter-
mine the value of planning both analytically and experimen-
tally [9, 14].

2.3 Planning as a resource-bounded activity

The various factors that determine the value of a plan are not
independent. In particular, the deliberation time required to
improve the quality of a plan will normally degrade the over-
all utility of the agent. Hence, it is useful to analyze planning
as a resource-bounded activity and to develop planning sys-
tems that can trade off planning quality for deliberation time.
Since in many domains the value of continued planning is con-
text dependent, a utility maximizing approach must rely on
constant, real-time monitoring of the planning process.

Dean, Horvitz, Russell, Zilberstein and others have shown
that anytime algorithms offer a simple means by which an
agent can trade off decision quality for deliberation time. In
addition, efficient models have been developed for composi-
tion and monitoring of systems that are composed of anytime
algorithms [13].

2.4 Planning versus problem-solving

Historically, planning has been closely associated with prob-
lem solving and similar search techniques have been widely
used in both areas. However in many “real world” environ-
ments planning is much more than problem solving. The
difference does not relate to the resource constraints and
real-time nature of planning — similar considerations apply to
real-time problem solving. Besides the richer representation
of operators and goals in planning, the main difference be-
tween planning and problem solving is the temporal scope. In
particular, a planning problem can contain much more than
a single problem solving episode. In some cases, the planning
component amounts to a sequential problem solving process.
But other intelligent agents are designed to operate in an en-
vironment over an extended period of time. Their long term
goal may be “keep all the machines in this room working” or
“keep track of all the targets in region N”. Translating such
a high level goal into action may not have a fixed solution
that can be derived and implemented. Achieving such goals
requires an ongoing situation assessment, planning, and ac-
tion. Such systems may be even harder to evaluate, but in
many ways they better represent practical problem domains.

To summarize, planning is much more than problem solv-
ing. In order to evaluate various planning systems we need
to modify the narrow definition of planning as “a partially or-
dered set of operators to be used in reaching a goal”. Instead,
planning should be viewed as a resource-bounded, reasoning
activity that provides useful information to an execution ar-
chitecture in selecting actions. The overall utility of a planner
is determined by the effect it has on the agent behavior.

3 Execution architectures

In this section we argue that planning systems should be
designed and evaluated with respect to a particular ezecu-
tion architecture. In many existing planning paradigms the
problem domain is well specified but the execution architec-
ture is either trivial or ill-specified. In other systems, the
execution architecture becomes the central component and
planning is virtually nonexistent. For example, in STRIPS

Planning Agents

style planning and many of its descendants, it is assumed that
execution is the obvious process of carrying out the actions
one by one subject to some ordering constraints. In other
systems, based on condition-action rules or a blackboard ar-
chitecture, the execution architecture is more complex, but
planning (in the very general sense defined above) does not
exist. In reality, planning must be accompanied by an execu-
tion architecture that can translate the plan into individual
actions, monitor their execution, recognize various types of
failures, recover from “simple” failures, and otherwise rely on
replanning.

Execution
Architecture

Sensors

T

Effectors

Physical
World

Figure 1: In practice the planning component interacts with
the execution architecture, not with the physical world

The execution architecture communicates and interacts with
the three major entities shown in Figure 1. The first entity
is the physical world that it manipulates. The primary task
of the execution architecture is to monitor (using sensory in-
put) the execution of actions (using certain manipulators)
that change the physical world. The second entity is a recov-
ery mechanism that can suggest ways to recover from certain
“simple” failures. Recovery is normally performed using a
simple planning mechanism or a reactive component whose
goal is to achieve the desired effect of the failed action. The
third entity is a planner. The execution architecture sends to
the planner information about the current state and receives
from the planner information on how to act intelligently to
achieve the goals. We deliberately avoid in this paper (except
for the purpose of giving examples) the discussion of particu-
lar representations of states, operators, and plans. Different
representations may be used by different systems, but the
general role of the execution architecture remains the same
over different planning approaches.

3.1 An example of an execution architecture

To demonstrate the notion of an execution architecture, we
describe below a simple example. This execution architecture
has been used in an application that is also described.

The plan segments that the execution architecture receives
from the planner are abstract plans in the sense that each
step may require a number of primitive actions and in the
sense that the order of the primitive actions is not fully speci-
fied. Therefore, the execution architecture needs to map each
step of the plan into a sequence of primitive actions. The ex-
ecution of each primitive action is controlled and monitored

SIGART Bulletin, Vol. 6, No. 1

1. While there exists an active task do

(a) Retrieve the next abstract plan segment from the
planner

(b) Map the plan into concrete base-level actions
(c) Execute each primitive action

(d) When a primitive action fails, use a local recovery
mechanism to achieve the intended effect of the ac-
tion

(e) When a plan segment fails, inform the planner

Figure 2: A simple execution architecture

by the execution architecture. The control of execution de-
termines such run-time parameters as resource consumption
and execution speed. The monitoring function verifies that
the execution is successful. In case of a failure, the recovery
mechanism is used to find an alternate set of primitive actions
that can achieve the desired effect of the failed action. As a
last resort the execution architecture can inform the planner
that the execution of a plan segment has failed.

We have used a similar execution architecture in [14] to con-
trol a simulated mobile robot whose sensing and planning
components were implemented as anytime algorithms. In
this application, a robot is situated in a simulated, two di-
mensional environment with random obstacles. The robot
does not have an exact map of the environment but it has
a vision capability that allows it to create an approximate
map. The environment is represented by a matrix of elemen-
tary positions. The robot can move between adjacent cells
of the matrix at a varying speed which affects the execution
time of the plan as well as the energy consumption. When
the simulation starts, the robot is presented with a certain
task that requires it to move to a particular position and
perform a certain job. Associated with each task is a reward
function that determines the value of the task as a function
of completion time. The system is designed to control the
movement of the robot, that is, to determine its direction
and speed at each point of time while maximizing the overall
utility. The overall utility depends on the value of the task
(a time dependent function), and on the amount of energy
consumed in order to complete it.

Path planning is performed using a coarse-to-fine search al-
gorithm that allows for unresolved path segments. In order
to make it an anytime algorithm, we vary the abstraction
level of the domain description. This allows the algorithm to
find quickly a low quality plan and then repeatedly refine it
by replanning a segment of the plan in more detail.

Figure 3 shows an instance of the problem domain. The thick
lines represent obstacles. The particular map that is shown
is the map that was available to the planner and includes
sensing noise. The thin dotted lines show the abstract plan
that was sent for execution. It includes a path from the lower
left corner to the upper right corner. The thick dotted line
shows the actual path followed by the robot when controlled
by the above execution architecture. Note that no replanning
was necessary since the recovery mechanism — an obstacle
avoidance algorithm — was sufficient in this domain to “fix”
any plan error. Finally, the path quality is the ratio between
the length of the shortest path (that takes much longer to
plan) and the actual path followed by the robot. An utility
maximizing approach to control the planning component is

Planning Agents

Path Quality = 0,760

Figure 3: Execution of abstract plans with noisy sensors

described in [14].

3.2 A separate execution architecture

There are many advantages to specifying and developing a
planning system with respect to a particular execution archi-
tecture rather than developing a complex planning system
that combines planning and execution. The rest of this sec-
tion summarizes the benefits of this approach.

Simplifying the design of planners

A well-defined execution architecture simplifies the develop-
ment of the planner by narrowing down the scope of the plan-
ning task. Once the execution architecture is responsible to
the safe operation of the system, the planner can operate un-
der arbitrary assumptions. Those assumptions may lead to
some probability of execution failure and replanning, but as
long as they contribute to performance in the average case,
they will have positive utility.

Facilitating “fair” comparison of planners

There is a large variability between planning systems in the
type of monitoring and recovery mechanisms that are sup-
ported by the execution architecture. These mechanisms can
have a major effect on the performance of the whole system.
In particular, a “poor” planner can exhibit good performance
when it is supported by a good execution architecture and
vice versa. Therefore, analysis and comparison of planners
that operate with the same execution architecture is much
more objective and meaningful.

Modularity
The separation of the planner from the execution architecture

leads to a modular approach with all the standard benefits
that modularity introduces into system development.

SIGART Bulletin, Vol. 6, No. 1

Integration of different planning paradigms

A separate execution architecture facilitates integration of
different planning paradigms that do not share the same
knowledge representation and reasoning techniques. For ex-
ample, one can integrate a more reactive rule-based planner
with a deliberative search-based planner. As long as the plan-
ners can individually communicate with the execution archi-
tecture and can be individually controlled by a meta-level
monitor, they can be integrated into one system.

Refining design choices

Separation of the planner from the execution architecture
allows for a more refined set of design choices. For example,
the principle of commitment to goals that has been examined
recently by the planning community can be applied to the
planner or to the execution architecture leading to totally
different solutions and performance gains.

Uniform scalability

Another advantage of separation is its support of a uniform
approach to system expansion. A planner and an execution
architecture of one level become, together, the execution ar-
chitecture of a higher level. The “primitive” actions of the
high level system are the typical tasks that can be assigned
to the low level system.

Robustness

Finally, separation of the planner and the execution architec-
ture leads to a robust system since the execution architecture
alone is responsible for the integrity of the system and for re-
covery from failures. Planners are normally much harder to
debug and verify so it is advantageous to rely on the robust-
ness of the execution architecture.

3.3 Planning as a goal refinement process

An important consequence of the above system decomposi-
tion is that a plan is no longer restricted to base-level actions.
The information that a planner sends to the execution archi-
tecture is interpreted as advice that has value in the sense
of statistical expectations, but it does not guarantee a so-
lution to the problem?. The execution architecture can use
the plan to select actions, but it is not committed to the
plan. Planning becomes a continuous goal refinement pro-
cess that translates a certain goal into a set of more opera-
tional, short term, obvious-to-achieve goals. Similar to the
approach taken by some abstract planners, we view any plan
consisting of a set of actions and ordering constraints as a
set of goals to achieve the expected outcomes of those actions
under the specified constraints. This approach leaves to the
execution architecture the decision of what to do (possibly
substituting one primitive action for another as needed). In
other words, planning translates long term, high-level goals
into more primitive, intermediate goals. This approach to
planning as a goal refinement process has a number of ad-
vantages. First, it further simplifies the planning problem
as its outcome is interpreted as intelligent advice. Second,
it facilitates the notion of anytime planning since an itera-
tive goal refinement process can be stopped at various points
along the way and provide useful (but incomplete) advice to

2 A similar approach has been proposed by Agre and Chap-
man’s plans-as-communications theory [1]. It has been exper-

imentally verified in the ATLANTIS architecture [5].

Planning Agents

the execution architecture. Obviously, the advice provided
after short deliberation may be less detailed and less helpful
than a complete plan, but it may be the right thing to do
under real-time pressure.

4 History-based evaluation

We propose to analyze and evaluate alternative planning sys-
tems with respect to the domain histories that they induce
and the utilities of such histories. A domain history is an ex-
tension of the notion of a state. It captures the change that
occurred in the domain over time. Instead of considering in-
dividual states or possible worlds, one can analyze sequences
of states or histories.

Histories facilitate a better formal treatment of the properties
of planning systems. In particular, they allow the utility of
the planner to be defined as a function of the actual solution
cost in terms of time and other resources, the solution quality,
and the rewards and penalties that affect plan execution. In
some situations the quality of the solution is a property of
the whole history rather than a property of the goal state
alone. For example, when a robot is required to maintain at
all times enough fuel to be able to return home. In addition,
using histories one can reason about the utility (and other
properties) of planning systems that operate over extended
periods of time, possibly over unbounded time frames.

In evaluating a planner, we assume a given execution ar-
chitecture, E, and a recovery mechanism, R. Moreover, we
assume that the execution architecture may include some
primitive mechanisms to achieve the goals, normally using a
reactive approach that produces actions as an immediate re-
sponse to sensory input. A history, H, of the physical world,
W, is a sequence of world states that result from (a) change
in the environment that is determined by the nature of the
domain, and (b) the actions performed by the agent. We
assume a given utility function U(H) that determines the
utility of histories.

The utility of a planner P at a given world state, Sp, is defined
as:

U'(P|So) = Y U(H)Pr(H|So, E[R, P])—
H

> U(H)Pr(H|So, E[R))

where E[R)] represents the operation of the execution archi-
tecture with the recovery mechanism and E[R, P] represents
the operation of the execution architecture with the recovery
mechanism and the planner. The utility of a planner repre-
sents the expected gain of utility due to active planning over
all the possible world histories. The utility of a planner in the
domain D is the expected utility of the planner with respect
to all the possible initial states:

U"(P) =" U'(P|So)Pr(So)

So

This approach to evaluation of planning systems has several
advantages. First, it can be applied to any planning system
and any planning paradigm. Second, it allows the researcher
to pose some important questions in a well-defined, uniform
way. For example, given a set of planners, one can check
which one is better in a given domain. Given a set of domains,

SIGART Bulletin, Vol. 6, No. 1

one can determine which ones can be handled efficiently by a
particular planner. All the “standard” properties of planners
including computational complexity, correctness, complete-
ness, and real-time operation are factored automatically into
this evaluation formula. And most importantly, no particu-
lar planning paradigm, from situation calculus and theorem
proving to decision-theoretic search, has an absolute advan-
tage over the others. No paradigm can be ruled out a priori.

The main value of this evaluation approach lies in its gen-
erality and uniformity. It treats the planner exactly as a
planner should be treated — as a performance improvement
deliberation process. Some may question the applicability
of this framework given the complexity of the representation
and reasoning about histories. But the same argument can
be applied to world states. Computer programs that repre-
sent and reason about states capture only a small fraction of
the contents of a real world state. The same principle ap-
plies to world histories. In practice, a small set of variables
may be sufficient to summarize the aspects of a history that
determine the utility of planning. The boundary between
states and histories may not be that obvious. In fact, some
existing systems keep history features as part of their state
representation.

5 Conclusion

We have examined the difficulties in evaluating and compar-
ing planning systems. Since planning systems will continue
to disagree on the fundamental role of the planner and on
base-level evaluation metrics, we propose to compare sys-
tems in the context of a complete command, planning and
execution environment. Moreover, we propose to compare
planners with respect to a particular execution architecture
since the execution architecture may have a major effect on
the overall utility of a planner. Finally, we use the expected
utility of domain histories as a unified evaluation criterion.

But as we noted earlier, evaluation of planning systems has
another goal beyond summarizing base-level performance.
The discovery of the laws of qualitative structure of plan-
ning systems remains the ultimate goal. A fair and unified
comparison approach is only the first step.

Acknowledgements

The participants of the AAAI-94 Workshop on Comparative
Analysis of Al Planning Systems have provided useful com-
ments on an earlier draft of this paper. This work was par-
tially supported by the University of Massachusetts under a
Faculty Research Grant and by the National Science Foun-
dation under grant TRI-9409827.

References

[1] P. E. Agre and D. Chapman. What are plans for?
Robotics and Autonomous Systems, 6:17-34, 1990.

[2] P. R. Cohen. FEmpirical Methods for Artificial Intelli-
gence, MIT Press, Forthcoming,.

[3] R. E. Fikes and N. J. Nilsson. STRIPS: a New Approach
to the Application of Theorem Proving to Problem Solv-
ing, Artificial Intelligence, Vol. 2, 1971.

[4] T.Dean, L. Kaelbling, J. Kirman and A. Nicholson. Plan-
ning with Deadlines in Stochastic Domains, Proceedings of
the Eleventh National Conference on Artificial Intelligence,
pp- 574-579, Washington, DC, 1993.

Planning Agents

[5] E. Gat. Integrating Planning and Reacting in a Hetero-
geneous Asynchronous Architecture for Controlling Real-
World Mobile Robots. Proceedings of the Tenth National
Conference on Artificial Intelligence, pp. 809-815, San
Jose, California, 1992.

[6] K. J. Hammond. Explaining and Repairing Plans that
Fail, Artificial Intelligence, 45:173-228, 1990.

[7] S. Hanks. Practical Temporal Projection, Proceedings of
the Fighth National Conference on Artificial Intelligence,
pp. 158-163, 1990.

[8] S. Hanks, M. Pollack and P. R. Cohen. Benchmarks,
Testbeds, Controlled Experimentation, and the Design of
Agent Architectures, AI Magazine, 14(4):17-42, 1993.

[9] R. A. Howard. Information value theory, IEEE Trans-
actions on Systems Science and Cybernetics, SSC-2(1):22—
26, 1966.

[10] A. Newell and H. A. Simon. Computer science as em-
pirical inquiry: Symbols and search, Communications of

the ACM, 12:113-126, 1976.
[11] E. D. Sacerdoti. The Non-Linear Nature of Plans, Pro-

ceedings of the International Joint Conference on Artificial

Intelligence, Tibilisi, USSR, 1975.

[12] A. Tate. Representing Plans as a Set of Constraints -
the <I-N-OVA> Model, ACM SIGART Bulletin, Vol. 6,
No. 1 (this issue), 1995.

[13] S. Zilberstein. Operational Rationality through Com-
pilation of Anytime Algorithms, Ph.D. dissertation, (also
Technical Report No. CSD-93-743), Computer Science Di-
vision, University of California, Berkeley, 1993.

[14] S. Zilberstein and S. J. Russell. Anytime sensing, plan-
ning and action: A practical model for robot control, Pro-
ceedings of the Thirteenth International Joint Conference
on Artificial Intelligence, Chambery, France, pp. 1402-
1407, 1993.

[15] S. Zilberstein and S. J. Russell. Optimal Composition of
Real-Time Systems, Artificial Intelligence, forthcoming.

SIGART Bulletin, Vol. 6, No. 1

