
Automated Conversion and Simplification of Plan Representations

Martin Allen and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{mwallen, shlomo}@cs.umass.edu

Abstract

As planning agents grow more sophisticated, issues of plan
representationarise alongside concerns with plangeneration.
Planning methods work over increasingly large and difficult
problems and resulting plans are often complex or unwieldy.
Further, where planners must interact with human beings—
either for purposes of plan verification and analysis, or in
mixed-initiativeplan-generation settings—plans must be rep-
resented so that the intended course of action is readily vis-
ible. We propose automated techniques for the simplifica-
tion of plans, and for conversion between distinct plan repre-
sentations; our proposal is illustrated by examples from our
recent research, concerning conversion between large-scale
MDP solutions and graph-based contingency plans.

Introduction
With a few exceptions, planning research has concentrated
upon finding plans that describe a correct or optimal course
of action to some objective. Other aspects of the resulting
plan have been somewhat neglected, such as compactness,
the cost of storage or transmission, the ability to understand
or explain the plan, or the ability to verify the plan or to re-
cover from failure during execution. As planning algorithms
improve in their ability to solve large, realistic problems, so
grow the complexity and size of the resulting plans. Many
existing techniques produce plans that are optimal, but that
rank poorly in terms of compactness, clarity, verifiability,
and ease of transmission to other decision-makers.

As an example, consider the use ofMarkov decision pro-
cesses(MDPs) in recent work on planning. Developed orig-
inally within operations research and control theory, MDPs
have been recently adopted by the AI community as a gen-
eral framework for planning under uncertainty (Deanet al.
1995), and have proven useful in practice for such problems
as mobile robot control, supply chain planning, forecast-
ing, and equipment maintenance (Boutilier, Dean, & Hanks
1999). MDPs provide a powerful general model, along with
well-understood and powerful algorithms for generating op-
timal solutions. The solution to an MDP is apolicy, nor-
mally represented as a function from states in the environ-
ment to actions. From the perspective of a planning prob-
lem, such a mapping can in turn be seen as nothing other
than acomplete plan, dealing with all possible contingen-
cies that might arise during execution. However, MDP tech-

niques have the disadvantage that policies for complex envi-
ronments can grow quite large, and prove difficult to repre-
sent in a compact or straightforward fashion.

For many purposes, however, plan representation is of
the essence. NASA’s semi-autonomous robotic space explo-
ration program—particularly the Mars rover project—is an
example. Existing rover designs have limited memory and
processing power, and constrained bandwidth for purposes
of communication with remote operators. These features,
combined with the difficulty of accurate advance modelling
of Martian surface conditions and the need for in-depth veri-
fication of plans prior to execution, mean that plans for rover
operation must be represented compactly and without un-
due complexity (Bresinaet al. 2002). Thus, MDP methods
have been considered infeasible, and research has concen-
trated uponlimited contingency planning, in which the plan-
ner adds progressively more branches to a basic plan, sub-
ject to constraints upon overall number of branch-points and
through-paths. Such plans are generally sub-optimal, with
effort directed towards identifying and planning for those
contingencies deemed most likely (Deardenet al. 2003), of
generating plans that are optimal onlyrelative toa fixed de-
gree of branching (Meuleau & Smith 2003). Similarly, work
onmixed-initiativeplanning (Burstein & McDermott 1996),
in which planners work in concert with human beings, re-
quire that interim plans be represented comprehensibly, al-
lowing users to provide guidance.

The apparent gap between optimal probabilistic planning
methods and more traditional planning representations and
techniques poses a significant challenge for researchers. In
order for automated planning to be useful, the plans pro-
duced must be of high quality. At the same time, the plans
produced serve many purposes, and often must be judged
based on more than the course of action they dictate. We
propose a line of research into automated techniques for
simplifying and converting between plan representations, to
proceed alongside more conventional research on generating
initial plans. We sketch here some work in this direction, and
suggest further avenues for research on the questions raised.

Converting between Plan Representations
Our work so far has focussed on conversion between MDP
solutions and graph-based contingency plans. In order to
solve large planning problems efficiently, MDPs and their



solutions are represented usingdecision diagrams. We have
found that simple transformations effectively reduce the size
of output policies, and convert them into relatively compact
contingency plans. Besides advantages stemming from their
small size, such plans allow for more straightforward analy-
sis of expected behavior, better serving the needs of human
users or plan-verification systems.

Decision diagrams and MDPs.Binary decision diagrams
(BDDs) compactly represent Boolean functions (Bryant
1986). Each BDD is a directed acyclic graph with nodes
representing variables and edges representing their values.
Each path in the BDD terminates in an output node (0 or 1),
giving the function’s value for the variable assignment cor-
responding to that path. Although the worst-case size of a
BDD is exponential in the number of variables—it may sim-
ply be a complete binary tree over those variables—many
useful functions are susceptible to compact representations.

If the BDD is ordered, so variables occur in the same
order on all paths, then any function has acanonical rep-
resentation, relative to that order. The canonical form can
be found by constructing the complete binary tree for the
function and then recursively combining identical subtrees,
removing nodes whose outgoing edges all lead to the same
subtree, replacing them with a single edge to that subtree.
Although the result is minimal relative to a fixed variable
ordering, there is no guarantee that this ordering is the best
possible. Indeed, finding the best variable ordering for repre-
senting a function is generally intractable. Still, many useful
functions have compact and easily-found BDD forms; fur-
ther, use of ordered BDDs allows many operations over the
represented functions to be performed efficiently by combin-
ing basic operations over the diagrams themselves. In prac-
tice, ordered BDDs efficiently manipulate functions over
very many variables, and prove useful in such areas as sym-
bolic model-checking for circuit and system design.

Algebraic decision diagrams (ADDs) are straightforward
extensions of BDDs, with real-valued outputs (Baharet al.
1993). ADDs can be used to representfactored MDPs, in
which states are assignments of values to variables. Since
the cost of computing using ADDs is proportional to their
size, MDPs with large state spaces can be solved efficiently
if represented using relatively compact ADDs. For instance,
the state-transition function for some actiona can be calcu-
lated by an ADDDa, in which each path represents two tu-
ples of valuesV1 andV2, and that outputs the probability of
moving from states given byV1 to those given byV2 under
a. The elimination of unneeded variables by canonical min-
imization thus corresponds to usingstate abstraction. For
example, eliminating variablev from a path inDa is equiv-
alent to treating the transition probability for actiona as the
same in all states identical in variables exceptv.

Solution techniques.The SPUDD planner first used ADDs
to represent and solve MDPs by way of dynamic program-
ming (Hoeyet al. 1999). Our work uses Symbolic-LAO?

(SLAO?), which also employs ADDs and is able to solve
very large problem-instances (Feng & Hansen 2002). The
algorithm extends LAO?, which combines heuristic search

STATE VARIABLES ACTION

1 〈0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0〉 COLLECT

2 〈0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1〉 COLLECT

3 〈0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0〉 COLLECT

...
4094 〈1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1〉 LEFT

4095 〈1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0〉 COLLECT

4096 〈1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1〉 COLLECT

Table 1: A look-up table description of a policy for the rover
problem MDP.

and dynamic programming to solve MDPs (Hansen & Zil-
berstein 2001). At each search step, LAO? expands states
along the leading edge of the current policy are according to
an admissible heuristic; dynamic programming is then used
to evaluate all currently expanded states, and the policy is
updated relative to the new evaluation. Since MDP policies
may contain loops, LAO? performs these updates using it-
erative methods (e.g. policy iteration), and is guaranteed to
terminate in an optimal policy. As a heuristic method, fur-
thermore, it guides search away from states that an optimal
policy never visits. Thus, in domains where policy explo-
ration can ignore a large fraction of the overall states, LAO?

performs significantly better than MDP algorithms that must
update the value of every possible state.

SLAO? extends the idea using ADDs, allowing compact
representation of large search-spaces. Furthermore, it ex-
ploits commonly-used routines for performing reachability
analysis in order to restrict its attention to states that may
actually be visited by the current policy. Policy expansion is
guided by an admissible heuristic, computed quickly using
an approximate algorithm. This heuristic element, and the
efficiency reachability analysis is implemented efficiently
for decision diagrams, makes SLAO? quite powerful. Ex-
periments have shown it to outperform regular LAO? and
SPUDD; it handles problems with over240 states, beyond
the practical reach of either of the others.

Our work here is based upon the application of SLAO?

to a version of the Mars Rover problem discussed in
(Horstmann & Zilberstein 2003). Each instance involves a
robotic rover-agent moving over a hill on which there a num-
ber of locations at which to collect samples, with varying
rewards between them and a fixed time-window in which to
operate. Movement uphill and downhill, as well as the col-
lection of samples, varies according to a set of normal dis-
tributions. We investigate processes for automatically sim-
plifying the policy generated by SLAO?, and for converting
it automatically into a graph-based contingency plan.

Automated conversion of output plans.SLAO? produces
an MDP policy in the form of an ADD mapping sets of states
to actions. Leaf-nodes of this ADD are labelled with actions
{au, a0, . . . , an}. These actions comprise an optimal pol-
icy, with the exception ofau, a special place-holder; since
some values of the variables necessary to compute the policy
are never actually visited by the policy, these states are safely
assigned an “unknown” action, without concern for sacrific-



d1

d2

d5

d3

d5

d4

d5

d6

unknown

d6 d6

t3 t3 t3

t2 t2t2

t1 t1t1

t0 t0t0

p2 p2 p2

p1p1p1

p0 p0p0

collect left

Figure 1: A sample policy output by SLAO?.

ing optimality. Figure 1 shows an example for a relatively
simple instance of the Mars Rover problem with212 states,
given by variables for current time, rover position, and ac-
tion duration. We write ADDs as binary trees with outputs at
the leaves, using a solid edge downward from a node where
a variable is true, and a dashed edge where false. Here, for
instance, we take action “collect” in any state corresponding
to the left-most path in the ADD. On the other hand, as can
be seen by the right-most path, this optimal policy never vis-
its a state in which variablesd1 andd5 are both true, and all
such states are assigned the “unknown” action.

On the one hand, the ADD version of this policy is rea-
sonably compact, relative to a more traditional look-up ta-
ble representation (see Table 1), which must generate an ac-
tion for every possible explicit combination of variables. On
the other hand, ADD solutions for problem-domains with
a larger number of variables and many possible actions will
generally be far more complicated, featuring many hundreds
of nodes and complicated paths. Indeed, SLAO?, like most
MDP solution techniques, is ultimately indifferent to the fi-
nal form of its policy. Many MDP solvers generate the pol-
icy in the form of a simple look-up table, as large as the
state-space itself; here too, the final ADD can be very large
and very complicated. Furthermore, even the sample policy
of Figure 1 tells us nothing about such things as theorder in
which the rover will perform its actions. Policies of this sort
are therefore of limited usefulness for straightforward plan
analysis and verification; human users are provided with lit-
tle information that might allow them, for instance, to iden-
tify errors in the initial specification of the planning domain.

Pruning an MDP policy. As explained, SLAO? produces
an ADD calculating the optimal policy for all reachable
states, assigning unreachable states to a default “unknown”
action. Although the policy does not actually dictate what to
do in such a state, the resulting plan is still optimal, since it
simply does not matter which action is assigned a state one is
guaranteed never to reach. By the same token, plan optimal-

PRUNE
input: Policy-ADD P .

while (true) do
if ROOT is OUTPUT-NODE

return ROOT
else ifTRUE(ROOT) is “unknown”

setROOT← FALSE(ROOT)
else ifFALSE(ROOT) is “unknown”

setROOT← TRUE(ROOT)
else do

setTRUE(ROOT)← PRUNE(TRUE(ROOT))
setFALSE(ROOT)← PRUNE(FALSE(ROOT))
return P

end

Table 2: The policy-pruning algorithm.

d1

d2

p2

d3

d5

d4

d5

d6

left

p0

collect

Figure 2: Pruned policy from Figure 1.

ity is preserved even if we assign one of ourother actions
to an unreachable state (a point originally made by Feng
and Hansen (Feng & Hansen 2002)). With this in mind, we
present a pruning algorithm, which trims the ADD of those
branches leading to the “unknown” action. Effectively, this
routine maps any unreachable states to one of the real ac-
tions that occurs in the optimal policy, eliminating variables
inessential to computing the optimal action.

Pruning proceeds using a simple top-down algorithm that
discards any node with an out-edge (true or false) pointing to
the “unknown” action, and returning that node’s other child
instead; if neither child is “unknown,” the algorithm is recur-
sively applied to the children. Table 2 shows the pseudocode
for this method; Figure 2 shows the result of applying it to
the ADD from Figure 1. Unreachable value-combinations
have now dropped out of the policy; it is straightforward to
verify that old and new policies dictate exactly the same ac-
tions for all legitimately reachable states.

The problem of computing a minimal decision diagram
without “unknown” actions is NP-complete (Sauerhoff &
Wegener 1996). Thus our pruning method, which visits each
node but once, can only be heuristic, and cannot guarantee
that the pruned version of the policy is as small as possible,
even for its fixed variable ordering. However, experimental
results show that this simple method can be quite effective
in significantly reducing output policy size. It is also easy
enough to see that pruned policies remain optimal. Plan util-



(Start) left

aa

collect
ab

bb

Figure 3: Plan created from policy of Figure 2.

ity is unaffected no matter what expected value is assigned
to the “unknown” actionau in any state; thus, we can as-
signau the same expected value as any other actionai, and
so can in fact simply assignai itself to unreachable states,
without affecting the value of the policy as a whole.

Converting plan representations. While the pruning
method just given reduces the size of the policy output by
our MDP solver, it does nothing to answer questions about
the relative ordering of actions and outcomes in the plan. For
such purposes, MDP policies are not natural candidates; we
therefore investigate methods for converting such policies
into usefulgraph-based contingency plans.

For our purposes, a contingency plan consists of a directed
graph(V,E) with starting vertexv0. Each vertexv ∈ V is
labelled with anaction. Edgese ∈ E are labelled with aset
of states. To follows a contingency plan, one starts in vertex
v0, takes the associated actiona0, and observes the states′

that results; one then follows the edge labelled with the set
containings′, repeating the process for the next vertex.

The complexity of a contingency plan can be measured as
some function of its graph-theoretical and other properties,
chosen according to the original reason for our interest in
plan simplicity. Recent research on contingency plans seeks
to limit the number of branch points in a plan, either in total
or along any one path, on the grounds that plans with lim-
ited branching are more easily verified (Deardenet al. 2003;
Meuleau & Smith 2003). Prior work of the second author
measures plan complexity as a weighted combination of the
number of nodes, the branching factor, and the size or com-
plexity of the labels along the edges (Horstmann & Zilber-
stein 2003). For purposes of plan analysis, and to catch out
unexpected behaviors that might indicate errors in the origi-
nal problem specification, it can be useful to reveal the over-
all structure of the plan by keeping edge labels relatively
small and allowing more branching, if this makes parsing
the expected sequence of events easier. For agents with lim-
ited storage and transmission capacity, on the other hand,
one basic and important measure of complexity is simply the
overall size of the plan, measured in terms of the sum total of
the space required to store a computationally useful descrip-
tion of the nodes, edges, and labels of the plan. We develop
a method that transforms policy ADDs into relatively com-
pact contingency plans using a heuristic technique, based on
the reachability analysis performed by SLAO?.

Generating a basic plan.After pruning, policies are con-
verted to contingency plans. For each actiona in the pruned
policy, we generate the characteristic function of itsaction-
set, S(a)—the states that the policy maps toa—by convert-
ing the policy-ADD into a BDD, mapping the output node
for actiona to 1, and all others to 0. After canonical mini-

ab: left_collect_edge

t2

t1

p2

t0

p2

p0

0

p1

1

Figure 4: Edge ab from the plan in Figure 3.

bb: collect_collect_edge

1

Figure 5: Edge bb from the plan in Figure 3 (this is simply
the constant “1” = TRUE node).

mization, this BDD calculates characteristic functionχS(a).
Graph verticesva are generated for each actiona, with ini-
tial vertex corresponding to the action taken in the MDP’s
starting state. For eachva, determine outgoing edges by:
1. CalculatingReach(S(a), a), the set of all states reach-

able from any state inS(a) by taking actiona.
2. For each action-nodeva′ (includingva itself), calculating

the intersectionL = (Reach(S(a), a) ∩ S(a′)).
3. If L is non-empty, adding an edge(va → va′), labelled

with the ADD for the characteristic function,χL.
These operations are all easily implemented using the ADDs
available. Reachability analysis uses routines that already
exist for SLAO?. Calculating set intersection involves sim-
ply multiplying the ADDs for their characteristic functions.

Figure 3 shows the result of applying this method to the
policy considered in Figure 2. Edges are given unique la-
bels (the ADDs that label them are generated separately for
convenience); Figures 4 and 5 show the labels for edgesab
andbb, respectively. Figure 4 gives the characteristic func-
tion for the set of states in which the rover willcollectsam-
ples, after having just movedleft. Figure 5 is potentially
more interesting. Here, the edge is simply the constant out-
put 1 = TRUE; this (and the fact that there is no edge from
the collect node back to theleft node) indicates that in all
cases, once the rover starts collecting samples, it does not
move again. Thus, the plan of action is a sequence of left-
ward movements, followed by a period of sample collec-
tion before time expires. So, even this simple example re-
veals an important difference between graph-based contin-
gency plans and the original MDP policies: while both dic-
tate an optimal course of action, the contingency plan shows
something that the MDP policy does not immediately reveal.
Since the original policy in Figure 1 does not carry with it
any explicit information about reachability, the actual be-



havior to be expected from the rover cannot be read off the
policy in the way that it is made visible by the correspond-
ing plan. Graph-based contingency plans can thus serve the
purposes of plan analysis and verification more directly.

Measuring and minimizing plan complexity. The overall
size of a decision diagram, measured in number of nodes,
is the most important measure for computational purposes.
This follows from the fact that the complexity of opera-
tions over decision diagrams is bounded by the basic size
of the diagram, rather than the function that is being calcu-
lated. While particular classes of functions may on average
be representable using smaller diagrams than some others,
there is little about individual diagrams, apart from their rel-
ative size, that makes them harder or easier to handle. Thus,
we can meaningfully measure the size and complexity of a
graph-based contingency plan in this context as the simple
sum of the number of vertices and edges in the graph, com-
bined with the total number of nodes occurring in the ADDs
labelling the various edges. Of course, this is not the only
relevant complexity measure applicable to such plans.

Our ongoing research concerns further methods for sim-
plifying graph-based plans. (Horstmann & Zilberstein 2003)
suggest ways in which further manipulation of the initial
plan generated from an MDP policy can improve plan com-
plexity. In that work, sets of states labelling some edge in the
plan are represented using intervals taken from some lines of
measure, and it is noted that it can sometimes be simpler to
separately describe a pair of setsS1, S2 than to describe their
unionS = (S1 ∪ S2) as a whole. In such cases, the over-
all size and complexity of a plan may in fact be minimized
by duplicatinga vertexva, and dividing the edges and la-
bels connected to it. Plan simplification routines may then
involve searching for ways of reducing plan complexity by
choosing vertices and labels that can profitably be split. Not
only can such splitting introduce smaller edge-labels, but it
can make the overall structure of the plan more transparent.

We are currently investigating the use of such techniques
in the ADD context. Bryant (Bryant 1986) gives examples
of functions for which the diagram computing the union of
any pair is larger than the summed size of the pair alone.
The SPUDD planner (Hoeyet al. 1999) also decomposes
ADDs to keep overall diagram-size manageable. It is not yet
clear how often this behavior arises for the policy-functions
of interest here; we are interested in analyzing the proper-
ties of policy-ADDs that give rise to it. In the meantime,
randomized and local-search techniques are again useful, in
order to examine different possible ways of dividing ADDs
into smaller subcomponents. This line of research has appli-
cability in such areas as mixed-initiative planning, since it
allows users to further unpack the structure of a contingency
plan by isolating the relative order of events, or by focussing
on the outcomes of actions for smaller subsets of states.

Conclusions and Further Directions
While the work described here employs the SLAO? algo-
rithm in particular, it points to the general potential use-
fulness of reachability analysis for planning. SLAO? can
solve very large planning problems, since it uses informa-

tion about reachability in the planning process itself. Other
algorithms can minimize plan size by exploiting the same
techniques, or by performing reachability analysis after the
initial plan is generated. In either case, information about
which states are genuinely reachable allows for aggressive
pruning of policies, while still guaranteeing optimality. Thus
an algorithm like SPUDD—which also uses decision dia-
grams and can efficiently check reachability—could also be
used to minimize and convert plan representations.

Our current work follows up on that described here. In
particular, we are investigating methods for rewriting the
graphical plans generated from optimal MDP solutions, fo-
cussing especially on their branching-structure. For many
domains, the graphical plans produced by our method can
feature action-nodes of high degree, corresponding to a large
number of distinct contingencies in the execution of the plan.
In addition, each action in the plan is initially represented by
but a single node in the graph. Thus, it may be quite diffi-
cult to identify the exact circumstances in which one might
take some particular actiona; the conditions under which
the plan dictates doinga may only be identified by some
complicated disjunction of possible states, describing all the
possible plan-paths eventuating in taking that action. On the
other hand, a plan structured as a tree, in which there is only
one path to any given node, can divide the possible courses
of action in ways that make expected behavior under the plan
more evident. By transforming the plan into a tree, we re-
duce the number of contingency branches down any given
path. We are thus looking at ways of automatically convert-
ing our simple graph-based contingency plans into tree (or
tree-like) structures; the complexity of such a plan can be
identified, for instance, in terms of the ability to restrict the
number of possible states one might be in at any one action-
node in the plan. Of course, converting to a tree format can
drastically increase the size of the plan, due to duplication
of nodes and edges; this is but one case of the trade-offs
that must be made, and balances struck, in pursuit of more
meaningful plan representations.

In general, researchers need to face the new challenges
that come with the increased success of planning methods.
Plans serve the purposes of not only those who must follow
them, but also those who must verify and analyze them. As
problems grow increasingly complicated, we need to pay at-
tention not only to how solutions are generated, but to how
they are represented. Our work makes some first steps to-
ward this problem, providing automated techniques for re-
ducing the size and complexity of optimal plans, and for
converting them to representations that make their structure
more evident. We are interested in approaches that address
both sides of the planning problem within one unified frame-
work, balancing the requirement that plans be generally suc-
cessful against the demand that they be simpler and more
comprehensible. Such a framework would address at least
some of the following fundamental questions:

1. How can planning algorithms exploit structured represen-
tations of problem domains in order to reduce both com-
putational and representational complexity?

2. Do the sorts of structured domain-models used to improve



results in plan generation also lend themselves well to re-
ducing representational complexity? What sorts of novel
representational structures do we arrive at if we keep both
goals in mind from the start?

3. For a given representational scheme, what well-defined
measures of representational complexity best reflect po-
tential objectives of a plan’s end-user, such as overall size,
verifiability, or comprehensibility?

4. What automated methods optimally—or to best
approximation—reduce some well-defined measure
of representational complexity, and what are the compu-
tational costs of doing so?

5. Given added objectives of reducing representational com-
plexity, are some representations better than others? In
particular, are some representations less effective for the
initial solution of a planning problem, but more effective
overall once we factor in the extra cost of simplification?

6. When users of a plan are willing to sacrifice some degree
of optimality for simpler representations, how best can we
measure and implement the resulting trade-offs?

7. How do we design and evaluate anytime algorithms for
optimizing both value and simplicity of plans, and how
do we control such algorithms in a real-time domain?

Of these questions, the last two, concerning the exact re-
lationship between the quality of a plan and properties of its
representational structure, are among the most interesting.
Once the idea of plan simplicity and representation is taken
seriously—in the sense that there are worthwhile goals hav-
ing to do with how a plan is represented—then the actual and
potential trade-offs between solution quality and representa-
tion become important. If some plan-representation scheme
is simply useless for our particular purposes, then it will be
necessary to replace the current plan with one based on a
better representation, even if solution quality suffers as a re-
sult. From the standpoint of research in resource-bounded
reasoning, this situation is a familiar one. Where limits on
resources such as time or power do not allow for computa-
tion of a fully-optimal solution, agents often have to sacrifice
plan quality. The same can be necessary where optimality
must be sacrificed for the sake of a different representation.

Planning theory and practice would be well-served by re-
search aimed at better establishing the relationship between
plan quality and representational simplicity. Once these re-
lationships are properly understood, it becomes possible to
present a unified framework for planning that is optimal or
near-optimal with respect to some combined measure of so-
lution quality and representational simplicity. Such a uni-
fied perspective also makes possible the construction of al-
gorithms that make trade-offs between these features of a
plan, and opens the door for anytime methods and real-time
control of planning processes. A planning methodology and
architecture that pays attention not only to generating but
also to representing plans will provide users with the ability
to produce good plans of action that are also suitable for such
purposes as verification and analysis. In mixed-initiative set-
tings, the ability to automatically convert between computa-
tionally useful planning structures and others that are more
intuitive to human users would also have obvious benefits.

Although much remains to be done, the research we have
presented here is one step in that direction.

Acknowledgments
This work was supported in part by the National Science
Foundation under grants IIS-9907331 and IIS-0219606, and
by NASA under cooperative agreement NCC 2-1311. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
reflect the views of the NSF or NASA.

The authors also thank Zhengzhu Feng and Max
Horstmann for their ideas and assistance.

References
Bahar, R. I.; Frohm, E.; Gaona, C.; Hachtel, G.; Macii,
E.; Pardo, A.; and Somenzi, F. 1993. Algebraic decision
diagrams and their applications. InProc. Intl. Conf. on
Computer-Aided Design, 188–191.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage.J. of AI Research11:1–94.
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.;
Smith, D.; and Washington, R. 2002. Planning under con-
tinuous time and resource uncertainty: A challenge for AI.
In Proc. 18th Conf. on Uncertainty in AI.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation.IEEE Trans. Comp.C-35:677–691.
Burstein, M., and McDermott, D. 1996. Issues in the devel-
opment of human-computer mixed-initiative planning. In
Gorayska, B., and Mey, J. L., eds.,Cognitive Technology.
Elsevier. 285–303.
Dean, T.; Kaelbling, L.; Kirman, J.; and Nicholson., A.
1995. Planning under time constraints in stochastic do-
mains.Artifical Intelligence76:35–74.
Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.;
and Washington, R. 2003. Incremental contingency plan-
ning. InProc. ICAPS-03 Workshop on Planning under Un-
certainty.
Feng, Z., and Hansen, E. A. 2002. Symbolic heuristic
search for factored Markov decision processes. InProc.
18th Natl. Conf. on Artificial Intelligence, 455–460.
Hansen, E. A., and Zilberstein, S. 2001. LAO?: A heuristic
search algorithm that finds solutions with loops.Artificial
Intelligence129:35–62.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proc. 15th Conf. Uncertainty in AI, 279–288.
Horstmann, M., and Zilberstein, S. 2003. Automated
generation of understandable contingency plans. InProc.
ICAPS-03 Workshop on Planning under Uncertainty.
Meuleau, N., and Smith, D. E. 2003. Optimal limited
contingency planning. InProc. ICAPS-03 Workshop on
Planning under Uncertainty.
Sauerhoff, M., and Wegener, I. 1996. On the complexity
of minimizing the OBDD size for incompletely specified
functions.IEEE Trans. CAD15(11):1435–1437.


