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ABSTRACT

In multi-agent cooperation, agents share a common goal,
which is evaluated through a global utility function. How-
ever, an agent typically cannot observe the global state of
an uncertain environment, and therefore they must com-
municate with each other in order to share the information
needed for deciding which actions to take. We argue that,
when communication incurs a cost (due to resource con-
sumption, for example), whether to communicate or not also
becomes a decision to make. Hence, communication decision
becomes part of the overall agent decision problem. In order
to explicitly address this problem, we present a multi-agent
extension to Markov decision processes in which communi-
cation can be modeled as an explicit action that incurs a
cost. This framework provides a foundation for a quantified
study of agent coordination policies and provides both mo-
tivation and insight to the design of heuristic approaches.
An example problem is studied under this framework. From
this example we can see the impact communication policies
have on the overall agent policies, and what implications we
can find toward the design of agent coordination policies.

1. INTRODUCTION
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Multi-agent coordination is the key to multi-agent prob-
lem solving. During coordination, communication is crucial
for the agents to coordinate properly, since an agent usually
only has a partial view of the system. In most occasions, it
is unrealistic for the agents to reach perfect communication,
i.e., to obtain the global state at all times. Here, we view
communication as the abstraction of obtaining non-local in-
formation, and in general there should be a cost associated
with it. Thus, the optimal policy for each agent must bal-
ance the amount of communication such that the informa-
tion is sufficient for proper coordination but the cost for
communication does not outweigh the expected gain. Many
coordination policies have been studied [11], but in order to
understand agent coordination in a quantitative way rather
than qualitatively, we need to have a framework that deals
with communication decisions in addition to decisions about
agent actions. Such a framework would also be very instru-
mental for the design of heuristic policies.

However, communication decisions are often overlooked in
the study of agent problem solving policies. This is partly
due to the complexity involved in introducing communica-
tion decisions, and also due to the lack of a clear, quantified
model for integrating communication aspects in agent prob-
lem solving. To this end, we propose a decision-theoretic
framework to model a multi-agent decision process. Our
focus is on cooperative, yet distributed systems, where all
agents share the same goal of maximizing the total expected
reward (utility). The key characteristics are that first, these
agents are decentralized, and second, they share a common,
global utility function, which depends on the global state
and the joint action (the parallel invocation of each agent’s
local action.) This is different from the self-interested agents
where each agent maximizes its own (local) utility. In our
model, a local markov process can be defined for each agent.
It is Markovian since the next local state depends stochasti-
cally only on the current local state and local action. How-
ever, note that because of the use of a global utility function
and the absence of local utility functions, the local Markov
process is not a standard Markov decision process. To be
more specific, each agent knows its current local state, i.e.,
the agent’s local state is fully observable (the local state
could be partially observable, but this does not restrict our
model, thus we make this simplification). However, an agent
cannot observe the global state, i.e., it cannot see the local
states of other agents. Instead, an agent can communica-
tion with the other agents and obtain such nonlocal infor-



mation, but communication costs may apply. This intro-
duces a new kind of observability, where an agent can de-
cide whether the global state (or part of the global state)
need to be observed. More importantly, since the observa-
tion incurs cost, the agent’s decision problem should now
include communication decisions as well. Unlike partially-
observable MDP (POMDP), here agents’ belief states can
potentially be changed by communication.

It has been recently shown that solving a decentralized
MDP with global utility functions exactly are NEXP com-
plete (i.e. nondeterministic exponential time) [2]. Thus,
even without communication, multi-agent decision problems
belong to a higher computational complexity class than stan-
dard MDP (P-complete) and POMDP (usually PSPACE
complete) [12], and therefore cannot be reduced to them.

For clarity, let us assume that the global utility /reward
function is known to all agents. This information is static
and may be agreed upon before the agents form the team,
i.e., it is assumed to be off-line information. Also, we assume
that each agent behaves rationally and has the same mind
power, i.e., they will independently (without any communi-
cation) reach the exactly same conclusion given a common
problem such as solving a Markov decision process (MDP).
This implies that all agents would follow the same joint ac-
tion if the agents all know the current global state (per-
fect coordination). This is because in such case all agents
are now presented with the same decision problem (given
global state, global reward function, and a common start
condition), thus they will independently solve the decision
problem, reaching the exactly same decision — which is an
optimal decision, and each agent then implements the lo-
cal part of this decision. Note that all this is done in an
independent fashion.

However, an agent cannot observe directly the local state
of other agents, which is dynamic information. Instead, an
agent has a choice of performing a communication action
just after the previous action finishes and before the next
action is chosen. The purpose of communication is for one
agent to know the current local state of another agent. The
content of the communication is local state information. We
further assume that all communications are done in a syn-
chronous fashion, which become a sub-stage in the agent’s
decision-action stage.

Whether the agent chooses to communicate or not, after
the communication substage, the agent will now choose a
local action based on all information available to this agent.
This includes the history (i.e., previous states, previous ac-
tions, and previous communications). After the action is
chosen, it is executed and the agent will now move to a next
state and start the next stage.

The key problem here is to find the optimal local decision
(whether it is a decision about regular action or the decision
about whether to perform communication or not) based on
all available information to each agent, and based on the
global reward function and communication cost. Note that,
because of the cooperative nature of our agents, the opti-
mal policy is a tuple that consists of the local policy of each
agent. This is different from typical agent decision problems
where the goal is to find best local policy for one agent situ-
ated in a multi-agent environment (such as in game-playing).

We propose a multi-agent extension to Markov decision
process to characterize the cooperative multi-agent decision
problem. This extension is a decentralized one, with each

agent making local decisions. This is different from the
centralized extension, namely the Multi-agent Markov de-
cision process (MMDP) defined by Boutilier in [3]. There,
although agents have joint actions consisting of individual
local agent actions, they do not have local states. Instead,
each agent observes the global state directly. This charac-
teristics greatly limits the applicability of MMDP to multi-
agent systems, since a key property of multi-agent systems
is that agents only have a partial view of the system. As
a result, there is no need for communication of local state
information, and the decision problem is to find the optimal
joint action based on the global state (via solving a MDP or
POMDP). The coordination problem there is for the agents
to follow the same optimal joint action when there are multi-
ple optimal joint actions. In comparison, in our definition of
multi-agent decision process, we assume local agent states,
and agents have to communicate to obtain other agent’s
local state information. This makes our decision problem
an inherently decentralized one, which is fundamentally dif-
ferent from centralized ones which assume the global state
knowledge [8, 15].

Our work is focused on the communication and coordi-
nation of cooperative agents, with the goal of finding best
policy tuples and achieving the highest global reward. We
directly model multi-agent problem-solving and communica-
tion into a decision process. This is different from the work
by Gmytrasiewicz and Durfee [4], which considers agent
decision-making from the perspective of an individual agent
in a self-interested environment. In doing so, an agent must
maintain its models of the other agents, which can including
their models of other agents as well. This creates a recursion
and hence the need of a recursive modeling method (RMM).
The problem there is to find the best local policy for this
agent.

Also related to this work is the theoretical study of de-
centralized control of finite state Markov processes [1, 9,
13]. There, both decentralized states and partitioned ac-
tions are assumed, and each agent’s decision is based on its
local information. However, they do not have communica-
tion decisions as well, instead, a fixed common information
structure is assumed, usually in the form of a delay of non-
local information, i.e., the global state information will be
available for all agents after k stages.

The problem of decision making with the cost of commu-
nication is a very important one. In the single agent case, it
is studied in [5, 6, 7], where communication takes the special
form of an agent sensing the environment. In a multi-agent
system, communication costs may relate to transmission fee,
resource cost, etc.

In the following sections we present a definition of a decen-
tralized cooperative multi-agent decision process, followed
by an example system, and a discussion of some heuristic
approaches. We conclude with some future directions.

2. MULTI-AGENT DECISION PROCESS

As mentioned before, our definition of a cooperative multi-
agent decision process is based on decentralized decision pro-
cesses. Each agent has its own Markov process. For clarity,
we will assume that the system consists of two agents X and
Y in the following notations. The same notations apply to
systems with 3 or more agents as well just by increasing the
arity of the vectors.

We define the set of agents o = {X,Y}, and the tuple



M?® = (8%, A%, p®(s}|sf,a”)) defines the Markov process in
X: its local state space is S®, local action space is A®, and
the local state transition probability p®(sj|s7,a”) defines
the probability of resulting in state s7 when taking action
a® in state sf. Similarly we can define Y’s process MY =
(8, AY,p¥(s¥|s?,a")), and the global state space is § x S¥
and joint action space is A® x AY.

The global reward function r¢(s7,s¥,af,a]) defines the
reward the system gets when the global state is (s7,s¥) and
the joint action is (af, a}). For simplicity we focus on finite-
horizon problems only, and thus we define the reward at
terminal time 7' is rr(s7,s¥). Also, if (s7,s}) represents
a terminal state (i.e., we allow the process to finish when
certain relationship between si and s}%’ are met even when
the current time is less than T'), we also define terminal
reward for those terminal states as rt(sf,sg), i.e., there is
no further actions after ¢.

Now we add communication into this system. We assume
a communication sub-stage where all communications com-
plete before deciding the regular action. The event flow in
one stage is depicted in Figure 1.
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Figure 1: Communication Sub-stage

Let m§ and m? denote the content of X and Y’s com-
munication during the communication phase. In particular,
a null content means that the agent chooses not to com-
municate. Exactly how the information is shared after the
communication clearly depends on the nature of communi-
cation. There are many communication types, to name a
few:

e tell: in this type of communication, one agent simply
tells its current local state to the other agent, i.e., in-
formation going outward. The sender will not know
the receiver’s local state as a result of this communi-
cation. In this type of communication, an agent knows
the other agent’s local state only when the other agent
voluntarily decides to tell.

e query: here, the result of the query is that the query
message sender agent receives the local state informa-
tion of the other agent, i.e., information going inward.
In reality, this usually means that the receiver sends
back a feedback message, but such detail is not nec-
essary in our abstract model of communication. Here,
the sender agent does not reveal its local state informa-
tion to the other agent. In other words, in this type of
communication, an agent can know the other agent’s
local stage whenever it wants to do so, but there is no
way to voluntarily tell other agent about its current
local state.

e sync: this is the combination of the above two, in
that when an agent performs a sync communication,
it reveals its own state to the other agent, and at the

same time obtain the other agent’s local state. As
a result of sync (regardless of which agent initiates
the communication), both agents now know the each
other’s local state, and also the knowledge that the
other agent knows the same. Again, in actual imple-
mentation more than one messages may be needed, but
in our model it is sufficient to symbolize the process
into one message communication.

Obviously, the choice of which communication type to
choose is usually constrained by the actual communication
ability of the agent. For example, if the agent’s only com-
munication means is to broadcast, then only the tell type
is possible, and the agent must tell all other agents. How-
ever, it is very important to know that each type has dif-
ferent complexity. For example, with the sync type, the
agents know that whenever they communicate, they know
the global state, and as a result the previous history often
becomes less important because the agents do not need the
history information to reason under the uncertainty about
the other agent’s state and belief.

Let ¢f(s®,m”) and c¢¥(s¥, mY) denote the cost of commu-
nication in each agent given a particular time and state. In
the simple case that a communication action has a fixed cost
regardless of the time and state, a single function ¢(m®) (or
¢(mY)) will suffice, where if m® is null, the cost is zero, and
otherwise, a fixed value c.

In summary, a decentralized multi-agent Markov process
is defined by o, M ¥, reward function r(-) and terminal con-
ditions, communication actions and type, and communica-
tion cost ¢(+). It is Markov because the global state depends
stochastically only on current state and current actions, al-
though now actions include communication.

Now we try to define the decision problem. First, for each
stage, each agent first observes its current state, then makes
decision about communication, and then chooses an action.
Thus, ((sf,sY),(mf,m?),(af,a})) represents global events
occurring at stage t. Thus, a global episode for this process
can be described as:

I = (38733)’(m87mg)a(ag7ag),"' )

(sfrsty)’(mfymty)’(af1ag)7"' 7(5:}’752') (1)

Here, (sy,s%) satisfies the terminal conditions (including
the case when #' = T'). Note that since we assume that ini-
tially both agents know each other’s initial state, (m§, m})
would always be (null, null).

The probability for that episode to happen (i.e., the prob-
ability of having the state sequences (s§, s, ..., si7) and (s§,
s¥, ..., s})), considering that communication does not change
agent local state, and each agent’s action is independent of
the other agent’s action, is:

t'—1
p(I) = [ p°(sfsalst, af) - p¥(stials?, ab). (2)
t=0

For such an episode, its total reward is the terminal reward
plus rewards collected at intermediate steps, and minus all
the communication costs at both agents:

-1
R(I) = ry(sh,sh)+ Y (re(sf,st,af,a})
t=0
—ci (sf,mi) — cf (s, mi)) 3)



Since agents can choose not to communicate and thus they
may not always sync themselves, the same past information
set in one agent can correspond to many different paths in
other agents, in general, each agent’s decision about commu-
nication/action could be based on all locally available infor-
mation, including the history and the current information.
This means that the decision problem in general is history
dependent, not Markovian. Let H;’™ be the information
available to agent X before it makes the communication de-
cision m, and H;* the information before the local action
decision a, then,

Htw’m = 537(mg7mg)70’87"' )
Szy(miymz)yazy'” 7522 (4)
HP = HP™,(mg,m{) (5)

Here, we see that the difference between a communication
action and a regular action: a communication action is seen
by both agents while a regular action is only known to the
local agent.

Thus, the local decision problem for agent X is to find out
a policy 7® that consists of two parts:

a>m th’m — my
w: HPY o af (6)

Here, 7™ defines a mapping from all local information to
a communication decision, and 7®® defines a mapping from
all local information to a decision about the next action.
Together, m* encodes all decisions X needs to make. HY"™,
HY™ o¥, o™ %% can be defined similarly so we omit
them here.

Based on a pair of local policies: (7%, 7Y), all possible
episodes are defined by the set {I(™ ™)}, where

JAGaRt a0 -

s, sY) (7)
t' -1
1rz,7ry 3 3
p(I") (p* (st4alst, m™* (H )
t=0
- P (siyalst, " (HY?))). (8)

Thus the total global expect reward for the policy pair

(7®, ) is,
E(r®,n¥) = Z

Te{I(=®.m¥)}

»(I) - R(I) (9)

The decision problem is, therefore, to find the optimal
pair of (7%, w¥) such that it maximizes E(n”, 7¥).

Obviously, calculating optimal policy is not going to be
computationally feasible in most cases. Decentralized de-
cision problems are NP hard in general [14]. Furthermore,
since optimal policy is history dependent, the size of a pol-
icy (i.e., all possible histories) is too large to handle even
for small problems. Thus, in most cases we cannot afford
to calculate the exact optimal policy but rather need an
approximation. For example, we can develop policies that
use not all local history but only a part of it (presumably
only some most recent information), therefore reduce the
size of the policy drastically. However, even in those cases

the complexity of the approximated policies may still be too
high, especially if there is no efficient algorithms (such as dy-
namic programming for MDP/POMDP) to apply. On the
other hand, heuristic solutions exist and are often easy to
compute, and by examining a family of heuristic solutions
we may indeed gain insight for designing good policies for
agent coordination.

3. AN EXAMPLE PROBLEM

Now let’s study an example and discuss the issues in de-
centralized multi-agent cooperation. Like in [3], we use a
grid world domain. Assume two robots, X and Y, in a
L x W grid world, (as shown in Figure 2, a 4 x 4 grid). Each
agent’s local process is simple: the local state is its position,
and the local actions are to move left, right, up, down, and
to stay where it is. Agent actions have uncertain outcomes:
if an agent chooses to move, there is probability ¢ (called
the success rate) that it moves to the neighbor cell in the
direction of the move, (1 — g)/4 chance resulting in any of
other neighbor cells, and the rest of times it does not move
(i.e., gets stuck in the current cell). Agents cannot move off
the grid. Both agents know the map of the grid, know one’s
own position in the grid (local state is observable), but they
do not know the current position of the other agent unless
they communicate.

@ 1 2 3

12 13 14 @5

Figure 2: A Grid World Example

The goal is for the two robots to meet (stay in the same
cell) as early as possible, and within a deadline time 7.
Once the two robots meet, the process finishes even if the
time is not yet T. We have a very simple global reward
function r: any move is free and receives no reward. If they
meet in ¢ steps, the terminal reward is A*R, where R is a
constant and 8 < 1is a time discount factor. If at time T the
robots still have not met, the terminal reward is 0. As for
communication, each robot can initiate communication, and
each communication costs a constant ¢. The initial condition
is that X is in position 0 and Y in 15, and they both know
each other’s initial position, and thus they are facing the
same decision problem of finding an optimal (7%, 7¥).

This is a very simple multi-agent decision problem as we
defined earlier. This problem domain is closed related to
a class of real-world application domains such as coordi-
nated exploration by multiple unmanned airborne vehicles
(MUAYV), multi-agent planning, and cooperative distributed
problem solving. However, even with this problem, finding
the best policy based on all local information, i.e., optimal
(7%, 7Y) is computationally infeasible. Since in each stage,
each agent can take 5 actions, each local action can have up
to 5 resulting positions, and 2 communication choices, while



the other agent may have 16 different possibilities in its mes-
sage content (assuming a 4 x 4 grid), that means an up to
(5 x5 x 2 x 16) = 800 fold increase of local information his-
tory in each stage (since H;;7 = Hy"™,(m§, m}),af,s{11).
Obviously, this means an explosion of the size of the local
policy, and therefore is infeasible to compute a truly optimal
policy.

As a side note, if the communication cost is 0, which
means that both agents can communicate to obtain global
information at all times (and hence no communication issue
anymore), this problem reduces to a centralized problem
(a typical MMDP problem mentioned earlier): we can con-
struct a standard MDP based on global state, joint action,
and global utility, and then solve the optimal global policy.
Obviously, the expected utility of this optimal global pol-
icy gives us an upper-bound for our decentralized policies,
since it does not consider communication costs. Later in
our discussion we will use this upper-bound as our baseline
results.

4. HEURISTIC APPROACHES

To deal with the complexity illustrated in the previous
section, we seek to reduce the size of the policy by defining
approximation policies that based on only a subset of H*™
and H™“, and use heuristic approaches. At one extreme,
agents can communicate (assuming sync type is used) at
every stage regardless of the history. In this case, global
states are known to both agents at all times, and thus we
can regard it as a centralized problem where global states
are observable. Thus, we are facing a standard MDP, and
we can use the standard value iteration algorithm to solve
the optimal global policy and then partition the global pol-
icy into local policies, in other words, simulating a central
controller. This is obviously not very good since many of the
communications are redundant (too much coordination). At
the other extreme, both agents can be totally silent and per-
forms random actions (no coordination). Obviously this is
also bad since they can do much better if they have a plan.

Thus, we modify these two extremes and compare two
heuristic approaches. Both heuristics correspond to some
popular social analogies, and they are general strategies that
can be applied to many domains besides the grid world do-
main.

In one policy, agents select an optimal plan based on their
last observed global state (i.e., the state where they last
performed a sync communication), and they communicate
(sync) whenever their current plan cannot be achieved (so
that a new plan can be selected), but do not communicate if
the plan is still achievable. This corresponds to the so-called
“No news is good news” (NN) type of social convention,
where if both parties are making progress as intended, they
do not communicate (no news), however they will negotiate
a new plan if the progress is not as intended. An example in
this grid world problem is that assuming both agents first
choose to meet at position 3 (top-right corner) in 3 steps, and
they will not communicate if in each step they are getting
closer to block 3. However, if X slips into block 4 when it
tries to move to block 1, X will sync with Y and the agents
will reselect a best position to meet, possibly block 6.

The other policy, in which no communication is needed,
basically divide the problem into two independent parts and
then each agent is committed to perform their part. In this
case, this division of work may have high probability of suc-

cess (i.e., in some cases agent may be able to recover from
adverse outcomes), however they cannot change their plan
dynamically, partly because they choose not to communicate
at all. Of course, this approach depends on both agents
knowing their initial global state so that they can choose
the best division. We call this “silent commitment” (SC)
approach. This approach also has its social counterpart,
where when two parties decide to coordinate, they divide
the work, set up a deadline when each party’s work has to
be completed, and then work on their own. Normally the
deadline should be far enough so that both party feel com-
fortable. In our grid world problem, the agents may agree
to be both at block 3 by time T' (the deadline). Thus, even
if X’s first move to the left resulted in block 4, X will try
to correct that and possibly still be able to enter block 3 by
time 7.

To compare these two heuristics (NN and SC), we note
that, in NN, X’s local policy uses only part of the history
information, namely the time they last communicated, and
the global state they discovered at that time (using the sync
type of communication). This reduces H;'™ and H;"" to
l,st,s? (and of course current information ¢,s¢), where [
is the last time that m{ # null or m{ # null, and s} is
X’s local state at time I, and s} is Y’s local state at time [
(transmitted as part of the content of mf or m}).

The NN policy is based on a heuristic function f(sf,s?),
which decides a best short-term goal: a global state (3%, §Y),
and progress functions for current state g’ (s¢,$%,t) tells if
X (or Y) has made sufficient progress at current ¢ toward
the the goal state §° (§¥). For our example, f simply tells
the mid-point of a shortest path between the two agents,
and g tells if the distance from the current local position to
the mid-point has been shortened as planned (i.e., reduced
by t —1). Thus, the policy 7” is,

. Tl AT .
st ) = { 2 ST

7> would choose the best local action so that the short
term goal §° is mostly likely to be reached.

On the other hand, the SC heuristic chooses a completely
different subset from local history: only the initial global
state! It uses a heuristic function h(sg, s§) — note the initial
global state here — which also decides a goal state (5%, §Y),
in our case the mid-point of a shortest path between X and
Y’s initial states. The difference between NN and SC is that
now in SC the agent has T time to reach its own goal state,
but in NN a progress function imposes stronger constraints
and thus becomes a dynamic plan.

SC never communicates, thus, 7™ (s”) is always null.
7% then chooses the best action so that §* may be reached.
Note that this policy is independent of time, i.e., similar to
a stationary policy for infinite horizon problems.

We can see that in both heuristics the size of policy is
significantly reduced so that it is computationally feasible.
Also, we note that the calculation of 7% involves optimiza-
tion, but in both cases the optimization is completely local,
i.e., both try to maximize the probability that §” (or §¥) to
be reached. In other words, a local utility measure is intro-
duced. In NN the utility measure is a short-term, dynamic
one, and in SC it is a fixed one. As a result, the local opti-
mization problem in each is now a standard MDP and thus
can be solved using typical dynamic programming.

Intuitively, NN pays communication costs to reduce un-



certainty in coordination, but SC avoids communication at
the cost of increased uncertainty. However, we note that
both NN and SC do not respond to communication costs
— the calculation of communication decisions does not in-
volve communication costs. Thus, there might be cases that
less uncertainty does not offset the cost paid for commu-
nication (when using NN), or that a communication could
have resulted in a large increase of expected utility (when
using SC). This prompt us to try to find a hybrid policy
that has the best of both worlds: it communicates to reduce
uncertainty when the cost is less than expected gain, and
avoids communication when the cost would be greater than
expected gain.

Just like SC or NN, the hybrid heuristic starts by in-
troducing local goals. Like NN, this goal could be a dy-
namic goal: an agent assumes that the other agent is making
progress toward its local goal if it does not receive commu-
nication from the other agent. But unlike NN, where goals
are changed only when the progress is not as expected, in
this hybrid heuristic, the agent is always deciding if there
is a better goal (assuming the other agent is making good
progress). However, even when a better goal exists, the
agent will first calculate the expected gain, and compare
it to the communication cost. If the latter is greater, the
agent remains silent, otherwise, it communicates, and a new
goal will be established. Thus, the goal could potentially be
a long term goal (like in SC), when communication cost is
high enough.

We need to note, though, that it may be quite difficult to
precisely decide if there exists a better goal, and how much
the expected gain is. This is also where heuristic functions
may be applied. In our example we use this simple heuristic:
try the adjacent positions of the current goal and check if
the agents may meet sooner in any of these positions. If so,
a better goal is found, and the potential gain is the utility
difference due to meeting earlier, times the probability that
both agents always making good progresses toward the new
goal. For example, if current time is 2 and the agents have
a chance of meeting at time 4 instead of 5, the difference is
B*R — B°R, and since both agents have 2 more steps to go,
the chance that they are always “on track” is ¢* x ¢°, and
therefore the expected gain (heuristic value) is ¢* R(3* —8°).

5. RESULTS AND DISCUSSIONS

In the following we evaluate the example problem and try
to discuss the implications of these heuristics with regard
to multi-agent coordination. We will compare the baseline
(the centralized, no communication cost case mentioned in
section 3), the SC policy, the NN policy, and the Hybrid
policy.

Using our example, we study how the expected global re-
ward changes with the heuristics, when we vary the deadline
T, the cost of communication ¢, the time discount factor 3,
and the success rate g. We assume R = 100. To define our
heuristic functions f and A when there exists more than one
shortest path, we use the path that closest to the straight
line between X and Y, i.e., the mid-point is the one that
closest to the straight line mid-point between X and Y.

First we study the expected rewards of NN, SC, and Hy-
brid with respect to the communication costs, as in Figure
3. Here ¢ = 096, T = 5, and 8 = 0.95. The baseline
value is 89.28, which gives an upper bound. Evidently, in
SC, the expected reward (y-axis) does not change at all,
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Figure 3: Communication Cost

because this policy never utilizes communication. The NN
policy has better performance when communication is free,
but it does not scale with communication cost, thus we see
the crossing point when communication cost increases. This
illustrates the general intuition: communication is a ratio-
nal thing (will achieve better performance) unless the cost of
communication is too high. In our case, communication in
NN indicates a change of short-term goal (de-commitment
or goal modification in typical multi-agent coordination lan-
guage). This is rational as long as the communication cost is
low. Otherwise, SC (where commitment cannot be changed
and the agent always tries to honor the commitment despite
local failures) would be a better solution. The Hybrid line
clearly reinforces our points, and it shows that such a hybrid
heuristic indeed gets the best of both worlds, and performs
better than any of the other two heuristics when communi-
cation cost is present. It performs as good as NN when cost
is 0, and it scales like SC when cost is very high.

How soon the cost of communication outweighs the ben-
efit of more information depends on the uncertainty in the
system. Clearly, with a higher q, meaning the robots’ move-
ments are more reliable, the amount of uncertainty in the
system is not high, and hence the increase of performance
due to the reduction of uncertainty via communication is
not much. Therefore, the crossing point in the figure would
come earlier when ¢ is greater. This is confirmed in our
study although due to space limitations we do not display
the results here. The benefit of the Hybrid heuristic is that
it eliminates the guess work when choosing over SC or NN,
since it adjusts to communication cost automatically.

Next, in Figure 4 we vary the time discount factor 8 and
see how these heuristics react. The smaller 3 is, the quicker
the reward decreases, thus the agents have an interest to
achieve the goal as soon as possible (if S=1 then the re-
ward is the same as long as they meet before the deadline.)
First we note that not surprisingly, Hybrid is the best. NN
is very close to Hybrid, and in general is better than SC,
since by resolving the uncertainty via communication they
agents can adapt quicker. Also, it is interesting to note that
when (8 decreases, performance of SC decreases slower than
the NN policy, and depends on the cost of communication,
the SC line can meet with NN:c lines (although it is always
under Hybrid:c lines), where ¢ is the communication cost.
The reason here is that, when 3 decreases, the cost of com-
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munication becomes more and more comparable with the
reward, since the communication cost is fixed. In the ex-
tremely case, the reward can be discounted so much that it
is smaller than the cost of communication. Obviously in this
case the rational decision is not to communicate (Hybrid will
reach the same conclusion via its calculation, so it performs
consistently better than SC). The implication is that, in a
time critical system, the agents should choose to communi-
cate earlier than later, since the weight of communication
may become greater when time passes.

Next, in Figure 5 we vary deadline 7" and see how they per-
form from very time-constrained (3) to having plenty slack
time (6). Here (3 is fixed at 0.95. We notice that when dead-
line is tight, Hybrid and SC are slightly better than NN since
agents do not have time for an alternative plan when their
initial plan fails. In these cases all three heuristics are quite
close to optimal (baseline upper bound). On the other hand,
when the deadline is far away, both NN and SC would allow
agents to reach their eventual goals (in the case of SC, agents
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have enough time to recover from earlier failures), thus in
this case their performance again becomes close. (Of course,
B close to 1 still needed). In this case, all three heuristics are
also quite close to the optimal. The most interesting case
is in the middle of the lines, when the deadline is not so
tight, the reduction of uncertainty and the use of dynamic
goal adaption can certainly help agents achieve their group
goals in a timely fashion, and hence Hybrid and NN per-
forms better. However, NN communicates whenever there
are uncertainty about the current commitment, so it may
communicate too much in high cost situations, and results
in a lower expected utility than SC.

It is also observed that with higher uncertainty (lower q)
the agents needs to communicate much more often in NN
policy, thus causing the performance difference between SC
and NN to be smaller. Again, Hybrid is the dominating one
among the three heuristics, suggesting the need for explicitly
reasoning about communication costs.

Finally, it is interesting to see how SC, NN, and Hybrid
differ with the success rate ¢ — the indicator that how reli-
able the agent’s actions are. In Figure 6, we again see that
when the uncertainty is low, all policies achieve about the
same performance (possibly close to the optimum). The Hy-
brid policy is again the dominating policy, outperforms both
NN and SC solidly. Between NN and SC, though, we can
see that if communication cost is zero or low, when uncer-
tainty increases NN is much better than SC. We need to note
that the time constraints play a very importance role here:
when T becomes greater (longer deadline) the SC line can
become better than some of the NN lines, in particular, the
ones with high communication costs (not shown here due to
the space constraint). The underlying reason is that when
agents have enough time to perform local recovery (as in SC)
without any communication, the lost of performance due to
not being able to de-commit can be offset by not spending
on communication, especially when the cost of communica-
tion is quite high, and the amount of communication needed
could be quite large when uncertainty is high.

Overall, these three policies give us some intuition about
when to use a policy that relies heavily on communication,
and when to use a policy that relies little on communi-
cation. In general, frequent communication (such as NN)



often means short-term/dynamic commitments, while low
communication policies (such as SC) often use long-term,
unchangeable, commitments. The optimum may be some-
where in the middle, although the computation demand is
prohibitive. The Hybrid policy demonstrates the need of
following these intuitions. More importantly, however, the
success of the Hybrid policy indicates that it is necessary
that we deal with communication cost directly and explic-
itly when designing a policy. The result of this integration
is that the new policy can adapt better to different situa-
tions, and also is more effective in terms of correctly reason-
ing about expected utilities and decision making. In other
words, we should begin to treat communication decisions
the same way we do for agent action decisions.

6. SUMMARY AND FUTURE WORK

In this paper we study the impact of communication deci-
sions on the construction of control policies in a multi-agent
setup. We argue that communication decisions are a fun-
damental aspect of the agent decision problem, and that
the problem solving model should integrate these decisions
explicitly. We have defined a decentralized framework of
a multi-agent MDP, described how communication and the
cost of communication should be modeled into such a frame-
work, what is optimality in this framework, and what kinds
of approximations can be used. Although the optimality
problem usually is computationally prohibitive, approxima-
tion methods and heuristics exist and can give us very im-
portant insights into some of the most important problems
of multi-agent coordination, for example, when the agents
should use dynamic commitments.

The study of the foundation of coordination in multi-agent
system has become more and more important, and we be-
lieve that a decentralized approach provides a formal foun-
dation and captures the complexity of the problem of coor-
dination. A lot of work remains to be done. First, since the
optimal policy is history-dependent, it would be very inter-
esting to see that under what situations an approximation
still maintains the optimality, i.e., under what conditions it
is safe to ignore a large part of the history information?

We are still in search for efficient algorithms for approxi-
mation approaches. Since in general dynamic programming
(hence the standard value iteration and policy iteration al-
gorithms) cannot be used [16] in decentralized decision prob-
lems, we need to know if there are special cases that dynamic
programming is possible, and if there are other efficient
computation techniques that are suitable for multi-agent
MDPs. Besides efficient approximation methods, learning
techniques such as [10] may also contribute to decentralized
decision-making.

Finally, decentralized MDPs may be extended so that they
cover infinite-horizon processes and also are able to deal with
the case where the agents do not have the same static global
understanding (for example, the robots do not have the com-
plete map). Also, it will be very interesting to study com-
munication when agents are clustered into sub-groups in a
multi-agent system. This would be very important when the
system scales up.
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