Efficient Maximization in Solving POMDPs
Zhengzhu Feng and Shlomo Zilberstein. Efficient Maximization in Solving POMDPs. Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI), 975-980, Pittsburgh, Pennsylvania, 2005.
Abstract
We present a simple, yet effective improvement to the dynamic programming algorithm for solving partially observable Markov decision processes. The technique targets the vector pruning operation during the maximization step, a key source of complexity in POMDP algorithms. We identify two types of structures in the belief space and exploit them to reduce significantly the number of constraints in the linear programs used for pruning. The benefits of the new technique are evaluated both analytically and experimentally, showing that it can lead to significant performance improvement. The results open up new research opportunities to enhance the performance and scalability of several POMDP algorithms.
Bibtex entry:
@inproceedings{FZaaai05, author = {Zhengzhu Feng and Shlomo Zilberstein}, title = {Efficient Maximization in Solving {POMDP}s}, booktitle = {Proceedings of the Twentieth National Conference on Artificial Intelligence}, year = {2005}, pages = {975-980}, address = {Pittsburgh, Pennsylvania}, url = {http://rbr.cs.umass.edu/shlomo/papers/FZaaai05.html} }shlomo@cs.umass.edu